2001

Prediction and management of acidity production and export from acid sulphate soils used for sugar production final report SRDC Project DNR004

Gardner, T

http://hdl.handle.net/11079/13206

Downloaded from Sugar Research Australia Ltd eLibrary
Prediction and management of acidity production and export from acid sulphate soils used for sugar production

FINAL REPORT
SRDC PROJECT
DNR 004
June 2001

CRC for Sustainable Sugar Production
CSIRO Land and Water
Department of Natural Resources and Mines

Freeman Cook, CSIRO Land and Water
80 Meiers Rd, Indooroopilly QLD 4068
Ph 07 3896 9465

Ted Gardner, Department of Natural Resources and Mines
80 Meiers Rd, Indooroopilly QLD 4068
Ph 07 3896 9488

To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of the authors.

"The Research Organisations are not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project."
Project No: DNR004

Title: Prediction and management of acidity production and export from acid sulphate soils used for sugar production

Project Start: 1 July 1997 Project Completion: 30 June 2001

Chief Investigator(s):

Name: Ted Gardner Freeman Cook
Position: Principal Scientist Senior Research Scientist
Salute: Dear Ted Dear Freeman
Company: Department Natural Resources CSIRO Land & Water
Address: 80 Meiers Road C/- DNR, Meiers Road
Town/Suburb: INDOOROOPILLY INDOOROOPILLY
State: QLD 4068 QLD 4068
Phone: (07) 3896 9488 (07) 3896 9465
Facsimile: (07) 3896 9623 (07) 3896 9591
Email: gardnet@dnr.qld.gov.au cookf@dnr.qld.gov.au

Objectives:

- To measure and predict water table variations and hydrological components of sugar cane growing on acid sulfate soils (ASS) after manipulating surface/subsurface drainage regimes using combinations of laser levelling, drain infilling and irrigation.

- To measure and predict the in situ acid production and export flux of acid from canelands on ASS subjected to different drainage and irrigation treatments.

- Transfer knowledge gained on ASS management over a three-year crop cycle to other canegrowers in areas of known risk, using models and other technology transfer tools.

The rationale behind the approach is to demonstrate how different farm scale management techniques can reduce/prevent acid export and/or acid production, accompanied by sufficient process understanding so that the results can be applied to other areas in Queensland and northern New South Wales.

Milestones:

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
<th>Payment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July 1997</td>
<td>1</td>
<td>$20,000</td>
<td>Sign project agreement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All parties sign project agreement.</td>
</tr>
<tr>
<td>1 October 1997</td>
<td>2</td>
<td>$20,000</td>
<td>Appointment of staff.</td>
</tr>
<tr>
<td>Date</td>
<td>Milestone</td>
<td>Payment</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>31 December 1997</td>
<td>3</td>
<td>$20,000</td>
<td>Install flow sampling equipment, consult local growers/sugar industry personnel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research Scientist and Technician appointed.</td>
</tr>
<tr>
<td>31 March 1998</td>
<td>4</td>
<td>$39,992</td>
<td>Install irrigation systems and field monitoring equipment on farm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irrigation systems installed and operational.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Field monitoring equipment installed and output data checked to verify operation.</td>
</tr>
<tr>
<td>31 December 1998</td>
<td>5</td>
<td>$46,551</td>
<td>Review results from first year of experiment, update milestones.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comprehensive report on results from first year of experiment submitted to SRDC.</td>
</tr>
<tr>
<td>1 June 1999</td>
<td>6</td>
<td>$46,000</td>
<td>Comparing field results with predictions from ASS hydrology model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acceptable comparison between model output and field results.</td>
</tr>
<tr>
<td>31 December 1999</td>
<td>7</td>
<td>$40,586</td>
<td>Review results from year 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comprehensive report on results from second year of experimentation submitted to SRDC.</td>
</tr>
<tr>
<td>31 May 2000</td>
<td>8</td>
<td>$45,000</td>
<td>Major Field Day for coastal cane industry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Successful Field Day attended by Qld and NSW cane industry. Media coverage. Fact Sheets distributed.</td>
</tr>
<tr>
<td>31 December 2000</td>
<td>9</td>
<td>$40,000</td>
<td>Review results from year 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Achievement Criteria:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comprehensive report on results from third year of experimentation submitted to SRDC.</td>
</tr>
<tr>
<td>30 June 2001</td>
<td>10</td>
<td>$36,791</td>
<td>Final Report submitted to SRDC/CRC.</td>
</tr>
<tr>
<td>Date</td>
<td>Milestone</td>
<td>Payment</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>$354,920</td>
</tr>
</tbody>
</table>

Harvesting, Mischke site.
Abstract

The experimental design of this project successfully enabled runoff and groundwater drainage flow components to be distinguished in a cane-farming context at Pimpama, southeast Queensland. The majority of acidity exported from the soils of the study area occurred via groundwater flow to drains.

Measurements of water composition showed that iron, aluminium and hydrogen ions are major components of total acidity. Iron will also contribute chemical oxygen demand to the receiving waters. Other heavy metals in drainage water were often in excess of ANZECC (2000) water quality guidelines. Mineralogy of the soils at each site was measured and minor differences were detected.

Evapotranspiration was found to be the major factor controlling the watertable in these soils. For the Pimpama drainage network groundwater flow to the drains is small compared to surface runoff and evapotranspiration. An analytical model of the hydrological system was developed, based on drainage and evaporation components.

A model that included water balance components and an empirical model for acid generation was developed using the Modelmaker software. This was used to show how changing drainage design would affect acid export and periods of waterlogging on soils. A copy of this model is included in this report.

Non-Technical Summary

This project has substantially added to the understanding of the processes of generation and export of acidity by drains from acid sulfate soils. The design of the project meant that water that ran over the soil surface (runoff) before entering drains could be measured separately from water that flowed through the ground (groundwater) to the drain. This allowed us to determine that the major route for acid discharge into drains was via the groundwater.

This project showed that drains only lowered the watertable of the soil within 10 m of the drain for these particular soils. The major function of the drains was removing surface runoff. It was evaporation from the soil surface and transpiration by the cane (termed evapotranspiration) that actually lowered the watertable for most of the site. Hence drains need to be designed specifically to get rid of surface water. Drains do not need to be deep in order to do this. Having shallow drains will also reduce the amount of groundwater and acid reaching the drains. Making shallower drains may result in the soil being waterlogged for longer. A model that predicts the affects of changing drainage depth and spacing on both acid export and waterlogging was developed.

Measurements of the composition of the water in the drains showed that it contained a lot of sulphate, iron and aluminium and generally had low pH values (acidic). The amount of acid the water contained (measured by pH) is related to how much neutralising chemical (lime, etc) is needed to bring the pH of the water back to acceptable limits. The high iron and aluminium concentrations in the water mean that
much more of the neutralising agent is required to correct the acidity than indicated by pH alone. This is because the iron reacts with oxygen in the receiving water to produce 2 moles of acid per mole of iron. The aluminium acts as a buffering reagent reacting by hydrolysis to produce aluminium hydroxides and acid as neutralising agents try to raise the pH of the water. The acid nature of the water means that it also contains other metals such as copper, zinc and manganese, which can have adverse environmental effects.

Measurements of the amount of minerals with the potential to generate acid in the soil showed that the potential was thousands of times greater than the amount of acid coming out annually in the drainage water. The estimated rate at which new acid was being formed was found to be greater than that being lost via drainage. Therefore the hope that acid drainage will go away with time is a false hope, and acid will continue to be lost in drainage water from these soils for many decades, even centuries to come. It is thus necessary to reduce the amount of acid lost in drainage water. Changing the drainage design by laser levelling and shallow drains can do this.

In light of these results, drainage design needs to be reassessed at the farm, catchment and district levels. Drains need to be designed to cope with surface runoff, and deeper drains are not the answer. Laser levelling of fields can reduce waterlogging due to inadequate surface drainage, and planting on raised beds may allow oxygen to the root zone sooner after localised flooding, therefore lowering the watertable more quickly. These techniques combined with shallow drains could produce a win-win situation with more cane production and less environmental impact.
Report

This project has fulfilled its objectives and delivered some high quality science. The extent of the science delivery can be seen in the publications arising from the project. A selection of these is collated as part of this final report. This report provides an overview of the outcomes and how they have met specific project objectives. The attached papers contain additional detail.

1. **To measure and predict water table variations and hydrological components of sugar cane growing on acid sulfate soils (ASS) after manipulating surface/subsurface drainage regimes using combinations of laser levelling, drain infilling and irrigation.**

The project was designed to use existing knowledge of drainage behaviour and uses the symmetry of the watertable shape to define the catchment area. Figure 1 shows the ideal shape for three parallel drains and compares this with the measured watertable at one point in time. The measured watertable shape is similar to the idealised conceptual shape thus showing that the water collected by the central drain will come from a defined catchment area.

Pressure transducers were installed in one transect of the dipwells at Mischke’s site to give a continuous record of watertable behaviour. From these results it was noted that reduction in the watertable height, due to water flow to the drains, only occurred for a short distance (10 m) from the drain. It was noted that evapotranspiration was the main component for water loss from these soils. This led to the derivation of an analytical mathematical expression that coupled evaporation and drainage together to predict the watertable behaviour for a single drainage event. This was shown to describe the watertable fall during drainage well in these soils (Cook *et al.*, 2000e,f).
Figure 1. a) Hypothetical watertable shape and b) measured watertable shape at Mischke’s site on two dates.
Subsequently a numerical model (FLASSH – flow in acid sulfate soils and hydrology) was developed using the concepts of the analytical watertable model (Cook et al., 2001a). The FLASSH model can calculate the runoff, and the number of days when the watertable is above a given height, as well as the individual components of the water balance. The model can be used to solve both inverse and forward problems. The inverse problem is solved when we obtain soil properties from the measured flow and watertable data, while the forward problem uses known soil property data to predict the flow rate and watertable heights.

The FLASSH model was firstly used inversely to derive the hydraulic conductivity and specific yield from measured flow and watertable height data. Subsequently, the effects on the components of the water balance were predicted for changes in the drainage depth and/or spacing. An example using FLASSH for Mischke’s site shows that changing the drainage depth is likely to be more effective in reducing acid discharges than reducing the drain spacing (Fig 2a,b). The number of days the watertable is predicted to be above 0.5 m and hence causing reduced yields is calculated with FLASSH (Fig. 2c). This will allow the model to be used along with economic models to estimate the economic benefits/costs of changing drainage design and work in this direction has started (Mallawaarachchi et al., 2001) An executable version of FLASSH is attached on a CD.
Figure 2. Predictions of the acidity discharged during the time of the experiment (August 1998 to December 2000) via runoff (RO) and groundwater (GW) flow to drains with; a) drain spacing of 135 m and various drain depths, b) drain depth of 1.1 m and various drain spacings and c) the time that the water table is predicted to be less than 0.5 m from the soil surface. Note the middle bar in graphs a and b is based on measured data.
Holm’s property had two sites both of which allowed the second part of the objectives (manipulating surface/subsurface drainage regimes using combinations of laser levelling, drain infilling and irrigation) to be evaluated. At the dryland site, 5 parallel drains were installed. In the first 18 months of operation only 3 of these drains were pumped giving an effective drain spacing of 90 m. In the last 5 months of operation all 5 drains were pumped giving a drain spacing of 45 m. Unfortunately the climatic conditions were very different in these two periods, as was the composition of the drainage water discharge (Table 1). This means that this experiment did not deliver results, which are easily interpreted. However, as the processes involved in the hydrology of these soils has been elucidated and synthesised into FLASSH this objective has still been met. This is seen in figure 3 where estimates using FLASSH are compared with the measured data. There is some under- and over-estimation by the model, but given the assumptions in the model, it does a reasonable job. More sophisticated modelling was attempted using HYDRUS2D (Simunek et al. 1999), but this model was difficult to parameterise and consistent results were not produced. This is due to highly non-linear nature of the physics involved in the behaviour of acid sulphate soils (see Rassam et al., 2001a – f).

Table 1. Mean composition of drainage water at Holm’s dryland site when 3 or 5 drains were operating.

<table>
<thead>
<tr>
<th></th>
<th>EC (dS m⁻¹)</th>
<th>pH</th>
<th>Fe (mg l⁻¹)</th>
<th>SO₄ (mg l⁻¹)</th>
<th>Cl (mg l⁻¹)</th>
<th>Al (mg l⁻¹)</th>
<th>Cu (μg l⁻¹)</th>
<th>Mn (mg l⁻¹)</th>
<th>Zn (μg l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 drains</td>
<td>11</td>
<td>6.5</td>
<td>4.4</td>
<td>1184</td>
<td>3181</td>
<td>10.6</td>
<td>123</td>
<td>1.2</td>
<td>151</td>
</tr>
<tr>
<td>5 drains</td>
<td>14</td>
<td>4.3</td>
<td>122.4</td>
<td>3614</td>
<td>3346</td>
<td>201.0</td>
<td>485</td>
<td>5.9</td>
<td>336</td>
</tr>
</tbody>
</table>

The second site at Holm’s property was irrigated using trickle irrigation. There are some difficulties with interpreting the effectiveness of irrigation in reducing acid discharge from this site. Firstly this site had been drained for a longer period of time than the dryland site. This means there is likely to be more actual acidity in the soil at this site compared with the dryland site. Secondly the soil is sandier at this site, which means there is probably less neutralising capacity. Also the site was irrigated infrequently due to the wet conditions in the first 18 months. Lastly, in the latter period of the study, there was a need to let the site dry out prior to harvesting. However, this site was successfully used to determine field scale solute transport parameters (Rassam et al., 2001d,e) and demonstrate some of the difficulties with predicting instantaneous flow rates and solute fluxes.

Iron floc on pump filter!

Iron sludge in base of sump.
Figure 3. Comparison of modelled and measured cumulative acidity discharge at Holm’s dryland site. The measurements and modelling incorporated a period when the drainage density changed.

2. To measure and predict the in situ acid production and export flux of acid from canelands on ASS subjected to different drainage and irrigation treatments.

The acid export from all sites via groundwater flow to the drains was monitored by measuring the volume discharged, pH and EC, and taking samples at prescribed drainage volumes with a pumping sampler. The samples were split into two with one sample acidified to $< \text{pH} 2$ by the addition of 4M nitric acid and filtered before storage in a cold room at 4°C. The samples were analysed by standard chemical methods for a range of cations and anions (Table 2). In terms of the actual and potential acidity in the water the important ions are H^+, Al^{3+} and Fe^{2+} (Cook, et al. 2000a). The amount of acidity from the 3 sites shows that the potential acidity associated with the metal ions is the dominant source of acidity in the drainage water (Fig 4). It also shows that, Al at Holm’s dryland site, Fe at Mischke’s site and a combination of both metal ions at Holm’s irrigated site dominate the acidity. The average rate of acidity exported via the groundwater flow to the drains is 3400, 5200 and 7900 mol ha$^{-1}$ y$^{-1}$ for Holm’s dryland, Holm’s irrigated and Mischke’s sites respectively. The increasing trend in acidity is associated with an increasing age since drained and possibly an accumulation of acidity in the soil. This trend of increasing acidity discharge with increasing age since drained is complicated by the difference in the soil elevation at each of the sites but is something that should be further investigated.
The composition of the drainage water contained levels of metals that exceed fresh water guidelines by many fold for some of the metals (Table 2). Aluminium and iron grossly exceed the guideline level. Dilution by surface runoff will reduce the concentrations in farm drains during flood conditions. However, during flood recession when groundwater flow will be a major proportion of the water in the drains, values as high as those in Table 2 may occur.

Table 2. Comparisons of drainage water concentrations of aluminium, iron, copper, zinc, and manganese with ANZECC guidelines for freshwater (ANZECC, 2000) during the study. The average is a flow-weighted average.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mischke’s</th>
<th>Holm’s Dryland</th>
<th>Holm’s Irrigated</th>
<th>Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak (µg/L)</td>
<td>Average (µg/L)</td>
<td>Peak (µg/L)</td>
<td>Average (µg/L)</td>
</tr>
<tr>
<td>Al</td>
<td>30,000</td>
<td>7,000</td>
<td>444,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Fe</td>
<td>229,000</td>
<td>61,500</td>
<td>337,000</td>
<td>9,000</td>
</tr>
<tr>
<td>Cu</td>
<td>180</td>
<td>17</td>
<td>240</td>
<td>19</td>
</tr>
<tr>
<td>Zn</td>
<td>1,230</td>
<td>290</td>
<td>540</td>
<td>220</td>
</tr>
<tr>
<td>Mn</td>
<td>2,400</td>
<td>1,140</td>
<td>9,800</td>
<td>1,200</td>
</tr>
</tbody>
</table>

The mineralogy and electro-chemistry of the soils was studied in a joint project with Assoc. Prof. Maria Elektorowicz (Concordia University, Montreal, Canada). This showed that different mineralogy’s occurred at Mischke’s and Holm’s dryland sites. Aluminium minerals such as Albite were present at both sites but were more abundant at Holm’s site. Iron rich minerals such as jarosite, siderite and goethite were more abundant at Mischke’s site. Further results from this work will be published in the future as the data is processed.

Electro-chemistry with Assoc. Prof Maria Elektorowicz, assisted by Freeman Cook and David Rassam.

Figure 4. Amount of acidity with time for a) Mischke’s, b) Holm’s dryland and c) Holm’s irrigated sites. Note Acidity scale is different for the other sites.
V-notch weirs were installed at Mischke’s and Holm’s dryland sites to measure runoff. The lack of fall, at both sites, through the weir means that the runoff volume cannot be measured using these weirs. Runoff samples were collected when the water level was rising but had not reached the point where water from offsite would have contaminated the flow. The runoff structure at Holm’s dryland site was only installed in 2000 and due to the dry year, failure of equipment and vandalism only two samples were collected. However, a water quality sampling site existed only 20 m from the corner of the block on Hotham creek and this data, supplied from an associated NHT project (Gardner & Ray) was used as an indication of the acidity of the water.

One option for managing ASS would be to allow leaching of the acidity, on the assumption that this would only take a short amount of time. To determine whether this option would be possible, soil core samples were taken and measurements of the total oxidisable sulphur (TOS) and sulphur extracted by 4M HCl at Mischke’s and Holm’s dryland site were made. This showed that the amount of actual acidity and potential acidity in these soils is millions of moles (H⁺) per hectare. The rate at which the acid is being discharged from these soils is tens of thousands of moles per hectare per year. From these data it can be seen that it will take many hundreds to thousands of years to exhaust the supply of acidity in these soils. Thus management options that minimised the release of acid will have to be devised.

A method was developed that directly measured the rate of pyrite oxidation by estimating the difference in the flux of oxygen into the soil profile and carbon dioxide out from their concentration profiles (Cook, et al., 2001(Poster paper 5)). The method was only tried at Mischke’s site. An estimate of an average oxidation rate of 220,000 mol ha⁻¹ yr⁻¹ of H⁺ ions was obtained. This suggests that the rate of production of acidity at Mischke’s site is about 20 times the rate of export. This implies that acidity is still accumulating in the soils at this site. The method developed appears promising and should be used to further investigate the rate of oxidation at other sites and over longer time periods.

3. Transfer knowledge gained on ASS management over a three-year crop cycle to other canegrowers in areas of known risk, using models and other technology transfer tools.

In this project knowledge has been transferred to canegrowers through a number of routes: papers at ASSCT conferences, CRC Sugar annual meetings, CRC environment workshops, QASSIT acid sulfate soil workshops, grower meetings, and field days (see the list attached). The FLASSH model has only recently been finished and will be used in further demonstrating the effect of changing drainage systems to growers and in particular evaluating the economic consequences of changing drainage systems.

Knowledge gained in this project has been transferred the to the scientific community through a number of publications at conferences and in journals listed below. This process will continue for sometime to come as the papers make their way through the scientific refereeing and publishing process.
Conclusions

This project has substantially added to the understanding of the processes of generation and export of acidity from acid sulfate soils. In particular it has shown:

1. the role of the metal ions Al and Fe in the acidity of the drainage waters
2. the role of Fe as a contributor to the low dissolved oxygen in drainage water
3. metal concentrations in the groundwater exceed fresh water guidelines particularly for iron and aluminium
4. that drains do not contribute greatly to lowering of water tables by loss of groundwater
5. evapotranspiration is the major controller of the water table
6. that the groundwater pathway is the major export route for acidity
7. that the amount of acidity in these soils is vast compared to the export rate
8. that the oxidation rate of pyrite is about 20 times the discharge rate, so acidity is still accumulating in these soils
9. that acid loss from these soils will continue for centuries
10. that modelling of the two dimensional solute transport process is a complex problem
11. that a simplified empirical model can predict acidity export from soil and climate data.

This project has also raised further questions that need to be answered that are listed below:
1. Does Fe cycling in the soil profile occur and add to the oxidation of the pyrite?
2. What is the role of secondary sulfides (jarosite etc) in the acid storage and release from soils?
3. Would raised beds and reduce drainage benefit cane yield and reduce acid export?
4. What is the long-term effect of acidity from these drainage systems on aquatic biota?
5. Would treatment of drainage water directly improve water quality for biota?
6. What greenhouse gas implications arise from oxidation of organic matter and release of sulfate from acid sulfate soils?
7. Would reducing drainage intensity increase denitrification and release of nitrous oxide, a greenhouse gas?

Recommendations For Cane Production on Acid Sulfate Soils

The major finding from this study is that the main acid export pathway from ASS is via groundwater flow to the drains and that this flow has a minor effect in lowering the watertable. The drainage system in cane growing areas on acid sulfate soils should be designed to remove the surface water efficiently but remove only minor amounts of the groundwater. The drainage system for cane production in acid sulfate soil areas should have the following features:

1. Laser levelling to eliminate low features that cause localised ponding and facilitate runoff to spoon drains
2. Shallow spoon drains to receive runoff and reduce groundwater flow
3. Cane planted on raised beds to allow transpiration to occur quickly after surface water has gone
4. Regional drainage systems designed to remove surface runoff but to not lower the regional watertable below AHD

Such a drainage system may involve the removal of drains or reduction of depth of drains in the present drainage systems. Knowledge of the soil properties should be sought before making changes. This process should be planned both at regional and farm scales.

The FLASSH model should be helpful in developing the farm scale drains.

Point 3 above will require further research to determine the usefulness of raised beds planting.

Acknowledgement

We would like to acknowledge the enthusiastic cooperation and assistance of the growers Lindsay and Kev Mischke and Ian Holm on whose properties these trials were carried out. We would like to thank the people without whose efforts and enthusiasm this project would not have been as successful: the setting up, data collection technical input were provided by; Geoff Carlin, Dan Morton, Tom McShane, Grant Millar, David Froggatt, Jeremy Claridge, David Hunt, James Ray,
Anita Petzler, Fiona Gavin, and Celia Mackie; scientific and modelling; Drs David Rassam, Mabo Suzuki, Maria Elektorowicz; water chemical measurements Rob de Hayr, Colleen Watson and Matthew Detering. Geoff Carlin’s efforts are especially noteworthy in his dedication to this project. Dr David Rassam is thanked for his resourcefulness, persistence, patience and rigour in experimentation and modelling.

George Rayment, for providing assistance, friendship, learned council and critical review throughout this project, which was greatly appreciated. The CRC Sugar staff especially Patricia Kennedy who were always helpful and cheerful.
Extension

Selected papers are attached as a compendium of the outputs from this project in the appendix. These papers are indicated by an * in the list below.

Field Days

Presentations and Workshops

Industry Journals and Newsletters

Posters

Refereed Scientific Papers

Electronic Media

2. Managing acid sulphate soils Video featured the experimental sites and interviews with Ted Gardner and Freeman Cook and was released at the ASSCT conference at Townsville 1999.

3. Aussie Estuaries Solving Acidity, a Video By Out of The Blue Ocean and Earth Films, features the site and Ted Gardner. This was shot in 1999.
Appendix: Copies of Key Publications

The following manuscripts are included in this report.

5. Rassam, DW, Cook, FJ, and Gardner, EA (2001). 1. Field and laboratory studies of drained acid sulphate soils. Accepted for publication in the Journal of Irrigation and Drainage Engineering, ASCE (Accepted)