2007

Moving from case studies to whole of industry: Implementing methods for wider industry adoption final report
SRDC Research Project CSE009

Jakku, E

http://hdl.handle.net/11079/13163
Downloaded from Sugar Research Australia Ltd eLibrary
APPENDIX 6: PUBLICATIONS
APPENDIX 6: PUBLICATIONS

Book Chapter

Referred Conference Papers

Poster Paper

1 Papers 6 and 11 were included in a previous SRDC final report (CSE007). Paper 7 was included in a previous SRDC final report (CSE001).
Popular Articles
Milestone Report No. 9B

SRDC project number: CSE009

Project title: Moving from case studies to whole of industry: Implementing methods for wider industry adoption.

Research organisation(s): CSIRO

Chief Investigator(s): Emma Jakku
Yvette Everingham
Geoff Inman-Bamber

Objectives:

1. Extend knowledge of the participatory technology development process to improve understanding of the adoption of complex technologies.

2. Build understanding and application of complex and emerging technologies (climate forecasting and crop model based decision support tools) through case studies across multiple regions.

3. Identify pathways that can potentially lead to the wider adoption of complex technologies.

Milestone number: No. 9b

Due date for milestone: 1.2.2008

Milestone Title: Sharing experiences about adoption processes for complex technologies

- Project team to conduct workshop on adoption process of complex technologies.
- Experiences of workshop participants documented.
- Relevance and limitations of the CSE009 conceptual adoption model reported.

Achievement criteria:
Milestone Achievement:

1. Project team to conduct workshop on adoption process of complex technologies.

The project team conducted a workshop on the adoption processes of complex technologies on 30th August 2007. The workshop was held at CSIRO in Meiers Road, Brisbane. The workshop agenda and invited participants can be found in Appendix I. Appendix II contains the PowerPoint presentation made by the project team to the workshop participants. This PowerPoint presentation provided an overview of the theoretical framework that describes the participatory development process of complex and knowledge intensive technologies (e.g. decision support systems). Appendices III to V summarise information captured at the workshop that pertained to the experiences of the workshop participants and their perceptions of the theoretical framework. A workshop evaluation has been presented in Appendix VI. The feedback provided by the workshop participants about the organisation of the workshop was constructive and rewards the project team and facilitator for the time spent planning the day.

2. Experiences of workshop participants documented.

Participants were asked to share their knowledge and experiences about adoption processes, models, frameworks and extension programs. Appendix III summarises the experiences and knowledge of each of the workshop participants in context of the application. The context varied among the workshop participants from NRM, whole of industry adoption, farmers, researchers and extension officers to name a few. In terms of adoption processes, it was clear that participatory approaches were commonly applied. This reinforced the importance of understanding the participatory development process.

3. Relevance and limitations of the CSE009 conceptual adoption model reported.

The thinking hats technique was implemented to identify the relevance and limitations of the CSE009 theoretical framework. The full details of the thinking hats exercise has been summarised and is presented in Appendix 4. This exercise revealed that the CSE009 theoretical framework is indeed very relevant and useful to consider when addressing and describing the adoption of complex technologies (yellow hat thinking). It was clear though, that one framework will not work for all situations and the success of the adoption process is largely influenced by the boundary object and the skills of the facilitator (black hat thinking). Opportunities for further improving the theoretical framework exist and options for further testing the theoretical framework with other boundary objects and applications (e.g. fisheries, government planning) were recommended (green hat thinking). Appendix V shows that the overall opinion of the workshop participants regarding the theoretical framework was quite high.
Intellectual Property Issues

Nil.

Communication and Adoption of Outputs

This workshop was intended to be an exercise in communication and adoption of outputs from the project CSE009. Based on the encouraging feedback from this workshop however, further awareness-raising about the potential of the theoretical framework should be considered. Pathways for raising this awareness about the framework will be actively pursued by the project team.

Proposed variations

Nil.

Personnel Changes

Nil.

Confidentiality

Nil.

Summary

A workshop was conducted to gain a common understanding of the key elements needed to increase adoption levels of complex technologies. This workshop established linkages between the participants' and project team's thinking about adoption processes and provided an environment to critique the project team's thinking in relation to the theoretical framework developed as part of the CSE009 project.

A wide range of participants that included researchers and extension staff within and external to the Australian sugar industry attended the workshop. Organisations that were represented at the workshop included BSES, Canegrowers, Charles Sturt University, J&R Coutts Consulting, CSIRO, James Cook University and SRDC. The participants had expertise across a diverse range of areas that included – climatology, farming systems, facilitation, sociology, investment management, agronomy, extension, irrigation management, people management, soil science, mathematics, small business operations and private consultancy.

After four years of work, it was very positive and rewarding for the project team to finish on such a high note with the workshop participants endorsing the theoretical framework, the main theoretical output developed as part of the CSE009 project. The workshop also identified future research areas that would lead to an even more improved theoretical framework.
List of Attachments

Appendix I: Agenda.

Appendix II: Presentation of theoretical framework by project team.

Appendix III: Experiences of workshop participants.

Appendix IV: Hats exercise.

Appendix V: Evaluation of theoretical framework.

Appendix VI: Workshop evaluation.
This Appendix contains the agenda for the CSE009 project workshop. Contact details for the invited participants, the project team and the facilitator have been provided.

CSE009 Project Workshop
Exploring Adoption Processes for Complex Technologies

Location: CSIRO, Meiers Rd, Brisbane
Time: 8.30am - 4.30pm
Date: Thursday 30th August 2007

Workshop purpose:
- To gain a common understanding of the key elements needed to increase adoption levels of complex technologies.

Workshop outcomes:
- To establish linkages between participants' and project team's thinking about adoption processes
- To critique the project team's thinking in relation to the conceptual model developed
- To increase the communication flow between researchers with regards to adoption strategies for complex technologies.

Meeting outline:
1. Thoughts and experiences about processes for achieving adoption of complex technologies
 a) Invited participants' thoughts and experiences.
 b) Project team's thoughts and experiences.
2. The development of linkages between our thinking.
3. Where to from here? What do we need to do now, given how our thinking has developed here today?
Invited Participants:

<table>
<thead>
<tr>
<th>Attended workshop</th>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Dianna Maldonado</td>
<td>SRDC</td>
<td>Brisbane</td>
<td>dmaldonado@srdc.gov.au</td>
</tr>
<tr>
<td>yes</td>
<td>Bianca Boseley</td>
<td>SRDC</td>
<td>Brisbane</td>
<td>bboseley@srdc.gov.au</td>
</tr>
<tr>
<td>yes</td>
<td>Robert Troedson</td>
<td>SRDC</td>
<td>Brisbane</td>
<td>rtroedson@srdc.gov.au</td>
</tr>
<tr>
<td>yes</td>
<td>Jeff Coutts</td>
<td>J&R Coutts Consulting</td>
<td>Toowoomba</td>
<td>jeff@couttsjr.com.au</td>
</tr>
<tr>
<td>yes</td>
<td>Jeremy Whish</td>
<td>CSIRO</td>
<td>Toowoomba</td>
<td>jeremy.whish@csiro.au</td>
</tr>
<tr>
<td>yes</td>
<td>Maurie Haines</td>
<td>BSES/Canegrowers</td>
<td>Bundaberg</td>
<td>mhaines@bses.org.au</td>
</tr>
<tr>
<td>no</td>
<td>Peter Hayman</td>
<td>SARDI</td>
<td>Adelaide</td>
<td>hayman.peter@saugov.sa.gov.au</td>
</tr>
<tr>
<td>yes</td>
<td>Peter McGuire</td>
<td>BSES</td>
<td>Condong, NSW</td>
<td>pmcguire@bses.org.au</td>
</tr>
<tr>
<td>yes</td>
<td>Peter Stone</td>
<td>CSIRO</td>
<td>Brisbane</td>
<td>peter.stone@csiro.au</td>
</tr>
<tr>
<td>yes</td>
<td>Tony Linedale</td>
<td>BSES</td>
<td>Bundaberg</td>
<td>tlinedale@bses.org.au</td>
</tr>
<tr>
<td>yes</td>
<td>Zvi Hochmann</td>
<td>CSIRO</td>
<td>Toowoomba</td>
<td>zvi.hochmann@csiro.au</td>
</tr>
<tr>
<td>yes</td>
<td>Tony Darbas</td>
<td>CSIRO</td>
<td>Brisbane</td>
<td>tony.darbus@csiro.au</td>
</tr>
<tr>
<td>yes</td>
<td>Kerri Whittenbury</td>
<td>Charles Sturt University</td>
<td>Albury</td>
<td>kwhittenbury@csu.edu.au</td>
</tr>
</tbody>
</table>

Project Team Participants:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emma Jakku</td>
<td>CSIRO</td>
<td>Brisbane</td>
<td>emma.jakku@csiro.au</td>
</tr>
<tr>
<td>Peter Thorburn</td>
<td>CSIRO</td>
<td>Brisbane</td>
<td>peter.thorburn@csiro.au</td>
</tr>
<tr>
<td>Steve Attard</td>
<td>CSIRO</td>
<td>Burdekin</td>
<td>steve.attard@csiro.au</td>
</tr>
<tr>
<td>Yvette Everingham</td>
<td>JCU</td>
<td>Townsville</td>
<td>yvette.everingham@jcu.edu.au</td>
</tr>
</tbody>
</table>

Facilitator:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maria Nolan</td>
<td>SeeChange Consulting</td>
<td>Brisbane</td>
<td>maria@seechangeconsulting.com.au</td>
</tr>
</tbody>
</table>
Overview

• The framework
 • Rationale for the framework
 • Key concepts in the framework

• Applying the framework
 • Irrigation scheduling case study
 • Seasonal Climate Forecasting case study

• Implications and future work
Rationale for the framework

- **How can a theoretical framework help?**
 - Generalises lessons about participatory DSS development
 - Draws attention to: context, process and outcomes
 - Emphasises the importance of co-learning
 - Clarifies steps to improve efficiency and effectiveness of DSS development

- **Framework based on concepts from sociology**
 - Sociology examines:
 - Patterns of relationships among individuals and groups of people
 - How people make sense of and interact with the world they live in
 - Sociological concepts from science and technology studies:
 - Examine the social factors and processes that influence the development and application of technologies
 - Provide new ways of thinking about participatory DSS development

Key concepts in the framework

- **Interpretative flexibility**
 - Technologies can have *different meanings* for different people

- **Technological frames**
 - *Different perspectives*, beliefs and expectations that people hold about a technology
 - Congruent vs. incongruent technological frames

- **Boundary object**
 - *Common focus* or point of reference to allow for communication, negotiation and cooperation
The framework

Overview

- The framework
 - Rationale for the framework
 - Key concepts in the framework
- Applying the framework
 - Irrigation scheduling case study
 - Seasonal Climate Forecasting case study
- Implications and future work
Irrigation scheduling

Opportunity for participatory DSS development

Problem:
Irrigating with limited water & uncertain rainfall

DSS:
WaterSense

Participatory development of WaterSense
- Explored different perspectives on when to use limited water
 - Different perceptions of soil water balance and crop response to stress
 - Different perspectives are partly based on situational factors
- Illustrates interpretative flexibility
- Illustrates different technological

...it's just they [the growers] don't think numerically, they don't think in terms of models. But when they grasp something and you get a guy jumping up with, oh I see what you're doing, and then he explains it back to you and adds a whole load of ideas that you never thought of, that is really quite thrilling. (Scientist)

...when you respect those parts you have a successful collaborative-type project and I think that project had those ingredients. (Extension Officer)
Irrigation – Action learning themes

• WaterSense as a boundary object
 • WaterSense provided a common focus point between participants

...it was bridging that gap between what was seen to be pretty good science, but making sure that it was paddock usable. [WaterSense]...could’ve been developed in an office in Townsville and it could’ve been spat out on a disk, and I don’t think anybody would’ve used it. ...the process of developing it and taking the science and bringing the two together so as at the end of the day, something was useful to the grower at his level rather than the scientist at his level, has been the real deal. (Extension Officer)

Irrigation – Action learning themes

• Building trust and ownership
 • Participatory development of WaterSense based on co-learning and collaboration
 • Allowed for the development of more congruent technological frames

...it comes back to the confidence side of things; there was growers involved with it [WaterSense]. Whereas...sometimes, some ideas are put up and growers may not have had much input into what they wanted, what they expected out of it. I feel we got a fair bit of input into what we expected of it, and yeah, I like it [WaterSense], it’s good. (Grower)
Managing climate risk.

Applying the framework – Irrigation

CONTEXT

- Biophysical context
- Social and cultural context
- Economic context
- Political context

Differing technological frames and interpretative flexibility

- Perception of soil water balance
- Perception of when to use water
- Perception of crop stress
- Building trust and ownership

Boundary object: WaterSense

Negotiation and co-learning

Potential for increasingly congruent technological frames

Outcome 1: Ongoing use of DSS

Seasonal Climate Forecasting (SCF)

Opportunity for participatory DSS development

Problem: Managing climate risk

DSS: RainForecaster
SCF – Action learning themes

- Climate vs. weather
 - Different meanings for different people
 - Illustrates interpretative flexibility

I’ve learnt that there are differences between climate forecasting and weather forecasting. And neither of them are exact sciences. (Miller)

When they say climate forecasting, the first perception was weather forecasting. I went there with the total wrong idea. Soon modified. ... I learnt the difference between weather and climate. When I thought there was no difference at all. (Grower)

SCF – Action learning themes

- Understanding probabilities
 - Different perspectives, based on different risk perceptions
 - Illustrates interpretative flexibility

Because I think one of the problems with it all [SCF], we’re not all statisticians, and so if you start talking probabilities, some people, if they follow the races you can use probabilities. But they’re not so good on probabilities. It takes a little while sometimes to get that probability message across. And so I think they’ve got to realise what the probability system means, and that’s why I think I tend to spend a bit more of the initial stage on to ‘likelihood’ rather than ‘probability’. (Extension officer)
SCF – Action learning themes

- Different perceptions of when SCF might be useful
 - Different perspectives on when and how to apply SCF
 - Learning from other's perspectives
 - Illustrates participants' technological frames

One good thing also was, with the other farmers – now they're all in different areas, except for one. He was my next door neighbour. But because we were all in different areas, they were doing things different to what we were doing. I said to myself, "Can I adapt that? Should I adapt that?" ... We started to learn off one another. (Grower)

Applying the framework – SCF

- Understanding probabilities
- Climate vs weather
- Differing technological frames and interpretative flexibility
- Negotiation and co-learning
- Boundary object: RainForecaster
- Potential for increasingly congruent technological frames
- Outcome 2: Management recommendation
Implications and future work

• Reinforces the value of participatory DSS development
 • Brings together different view points and knowledge (e.g.
 researchers and growers) to focus on a common issue
 • Co-learning → improved understanding and management

• Theoretical framework
 • Generalises lessons about participatory DSS development.
 • Identifies concepts that clarify key steps in participatory DSS
 development

• Next steps
 • Validate the framework through further analysis of interview data
 • Further operationalise the framework to find ways to make the
 DSS development process more efficient and effective

Acknowledgements
This study was supported by funds from the Australian sugar
industry and Australian Government through Sugar Research and
Development Corporation, which are gratefully acknowledged.

We would also like to thank:
Steve Attard, Tony Webster, Jody Biggs, Mike Spillman, Shaun
Verall, Rick Beattle, Peter McGuire, Bob Aitken, Maurie Haines,
Tony Linedale, Aaron Cauchi, Sarah Jones-Triflely, Erich Hammer,
Peter Lucy and Tom Harney and the other members of our case
study groups.

Thank you
Participants were asked to share their knowledge and experiences about adoption processes, models, frameworks and extension programs. The tables that follow summarise the experiences and knowledge of each of the three workshop groups and the context of the application.

Group 1

<table>
<thead>
<tr>
<th>Adoption processes, models, frameworks</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>Paddock level</td>
</tr>
<tr>
<td>One on one</td>
<td>Paddock level</td>
</tr>
<tr>
<td>Action learning</td>
<td>Group work, NRM plans. With/without regulatory imposition.</td>
</tr>
<tr>
<td>Commercial incentives and education</td>
<td>Whole of industry, adoption. Paddock/farm level adoption. Landcare, NRM.</td>
</tr>
<tr>
<td>Commerce</td>
<td>NRM, farm practice</td>
</tr>
<tr>
<td>Capacity building, social capital</td>
<td>NRM, farm practice</td>
</tr>
<tr>
<td>Commercial rewards for achieved goals</td>
<td>Outcome oriented payments.</td>
</tr>
<tr>
<td>(subsidy?)</td>
<td></td>
</tr>
<tr>
<td>Use of champions</td>
<td></td>
</tr>
</tbody>
</table>

Group 2

<table>
<thead>
<tr>
<th>Adoption processes, models, frameworks</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>Sugarcane farmers (SCF -- climate, farmers, harvesters, whole chain, researchers, extension staff.</td>
</tr>
<tr>
<td>On-farm research (question development process)</td>
<td>See above (question development)</td>
</tr>
<tr>
<td>Participation – interpretation</td>
<td>Farmers, researchers, consultants, extension officers</td>
</tr>
<tr>
<td>Adoption processes, models, frameworks</td>
<td>Context</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Incentive programs</td>
<td>- Slow adopters</td>
</tr>
<tr>
<td>- Encourage "slow adopters"</td>
<td>- Progressive thinkers (?)/early adopters</td>
</tr>
<tr>
<td>- Reward "fast adopters"</td>
<td></td>
</tr>
<tr>
<td>Awareness</td>
<td>- General audience</td>
</tr>
<tr>
<td>- Promotion</td>
<td>- Whole of industry</td>
</tr>
<tr>
<td>- Outcome demonstrated</td>
<td>- Targeted</td>
</tr>
<tr>
<td>Facilitated learning groups</td>
<td>CPI meetings</td>
</tr>
<tr>
<td>Self-directed trials</td>
<td>SRDC Grower group initiative projects</td>
</tr>
<tr>
<td>Benchmarking</td>
<td></td>
</tr>
<tr>
<td>One-on-one demonstration/interaction</td>
<td></td>
</tr>
<tr>
<td>Involve end-user in R&D process</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td></td>
</tr>
<tr>
<td>Information access</td>
<td></td>
</tr>
<tr>
<td>Removal of alternatives</td>
<td></td>
</tr>
</tbody>
</table>
Participants used De Bono's six thinking hats as a method for providing feedback on the theoretical framework. The discussion focused on three of the six hats:

- Yellow hat (positive and constructive feedback)
- Black hat (negative assessment) and
- Green hat (creative thinking).

The following tables summarise the responses captured by three working groups in relation to the three coloured hats. Figures A4.1 to A4.3 show the thinking hat groups.

Figure A4.1: "Thinking Hat" group – Peter McGuire, Emma Jakku, Yvette Everingham, Bianca Boseley and Jeff Coutts.
Figure A4.2: "Thinking Hat" group – Zvi Hochmann, Tony Linedale, Robert Troedson, Peter Thorburn and Jeremy Whish.

Figure A4.3: "Thinking Hat" group – Toni Darbas, Peter Stone, Maurie Haynes, Diana Maldonado, Kerri Whittenbury and Steve Attard.
<p>| Group 1 |
|-------------------|-------------------|-------------------|
| Yellow Hat | Black Hat | Green Hat |
| Provide a common framework for dialogue and feedback | Has the framework been tested with anything other than DSS e.g. incentives? | Test framework with other boundary objects other than DSS (e.g. WQIP, Fishery Restrictions, EMS, nutrient management zones, incentive schemes, local government/land planning) |
| Like the use of boundary object to focus on | I. P. issues -- who owns what? | Existing frameworks exist, e.g. indigenous groups. Could they apply here? |
| Allows people to build trust (the boundary objects) | How do you ensure everyone understands e.g. language? | Role for facilitators/local gatekeeper - strong local knowledge - background work - development a procedure for checking, formalise |
| Having research that is applicable | How much concurrency is enough? (When do you reach the threshold?) | Develop tests to examine the degree of congruency with a number of groups and the same boundary object (perhaps a different boundary object). What are the outcomes/evaluate the progress, the process? |
| Includes multi-disciplinary people (farmers, extension officers, social scientists, physiologists etc) | The model is limited. How to go beyond outcomes 1, 2, 3? | Formally studied diffusion success of ground your objects and/or compare to conventional DSS diffusion success. |
| Provides for evaluation of effectiveness at different levels | Are there more learnings to provide insights to improve chances adoption? (It's been looked at using cognitive sciences and not social) | |
| Potential of developing user-friendly technology | | |
| Avoids dichotomous thinking | | |
| Ownership of (the design) of the end product | | |
| No preconceptions that one form of knowledge was better | | |</p>
<table>
<thead>
<tr>
<th>Yellow Hat</th>
<th>Black Hat</th>
<th>Green Hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual schematic helpful</td>
<td>One framework may not suit all</td>
<td>Put some definitions/boundaries around the boundary objects</td>
</tr>
<tr>
<td>Structures what has otherwise been thoughts and ideas/loose theories</td>
<td>Doesn't include all possible outcomes e.g. rejection</td>
<td>Consider other frameworks</td>
</tr>
<tr>
<td>Nicely grounded</td>
<td>Should we describe outcomes?</td>
<td>Run historic projects through the framework</td>
</tr>
<tr>
<td>Good framework for dialogue about the R&D framework</td>
<td>Group must be typical</td>
<td>Have the fourth outcome (rejection)</td>
</tr>
<tr>
<td>Good way to share thinking and insights with others</td>
<td>Stops at DSS use rather than benefits</td>
<td>Yes, see if examples all have a currently available outcome</td>
</tr>
<tr>
<td>Generalise lessons learnt</td>
<td>Requires some learning</td>
<td>Considered who is appropriate and what the implication is of choosing them</td>
</tr>
<tr>
<td>Crystallise steps and processes in PAR activities</td>
<td>Needs a good facilitator</td>
<td>Insert "benefit"/"impact" box under outcome boxes</td>
</tr>
<tr>
<td>New perspectives about why a co-learning is important</td>
<td>Provides a conceptual framework not a method</td>
<td>Clear explanations and communication, possibly used examples</td>
</tr>
<tr>
<td>Emphasise social component of technology adoption</td>
<td>Does a structure inhibit "blue sky" thinking?</td>
<td>Selection of facilitator needs to be important in the whole process</td>
</tr>
<tr>
<td>Simple, clear, insightful</td>
<td>Who is the audience?</td>
<td>Direct people to a toolbox of practical methods e.g. stakeholder analysis, continuous improvement/best practice etc</td>
</tr>
<tr>
<td>Sets a common goal</td>
<td>There are many facets of adoption excluded</td>
<td></td>
</tr>
<tr>
<td>Better anticipate roadblocks</td>
<td>If the boundary objects fails, doesn't tell you why</td>
<td></td>
</tr>
</tbody>
</table>
Group 3

<table>
<thead>
<tr>
<th>Yellow Hat</th>
<th>Black Hat</th>
<th>Green Hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra dimension for interaction</td>
<td>Process is dependent on the selection and presentation of boundary object</td>
<td>Independent evaluation of boundary object prior to process and during</td>
</tr>
<tr>
<td>Helps the process of interaction</td>
<td>Process is dependent on the validity of the boundary object</td>
<td>Invest in good facilitation and don't be put off by problems along the way</td>
</tr>
<tr>
<td>Helps identify the strengths and weaknesses of an interaction</td>
<td>Facilitation will impact on the degree of congruence</td>
<td>Peer review (preemptive)</td>
</tr>
<tr>
<td>Pictorially depicts where individuals are within the process</td>
<td>All the relevant disciplines included? E.g. cognitive psychology</td>
<td>Write up a paper</td>
</tr>
<tr>
<td>Integrates different contexts</td>
<td>Has there been a full investigation of learnings of previous efforts with similar boundary objects?</td>
<td>Continued to communicate with other groups</td>
</tr>
<tr>
<td>Incorporates understanding of social issues</td>
<td>Bias in structure may affect direction</td>
<td>"Correct" weighting of social versus technical</td>
</tr>
<tr>
<td>Illustrates different paths to outcomes</td>
<td>Procrastination may develop</td>
<td>Reflection and reiteration</td>
</tr>
<tr>
<td>Has structure and direction</td>
<td>Blurring of focus may occur leading away from objective</td>
<td>Explicit thinking about dealing with partial congruence</td>
</tr>
<tr>
<td>Client involvement</td>
<td>Cost/benefit of process</td>
<td>Develop a layman's version of the framework</td>
</tr>
<tr>
<td>Recognizes definition of issues</td>
<td>Doesn't deal well partial congruence</td>
<td>Deconstruct Outcome 3</td>
</tr>
<tr>
<td>Incorporates flexibility</td>
<td>Uses jargon, so may hinder understanding</td>
<td></td>
</tr>
<tr>
<td>Paradigm shift from DSS to boundary object</td>
<td>Outcome 3 might occur for different reasons</td>
<td></td>
</tr>
<tr>
<td>Recognition of the importance of outside drivers (context)</td>
<td>How to deal with scaling up issues? What happens after the "group"? Moving beyond the group?</td>
<td></td>
</tr>
<tr>
<td>Recognition of three outcomes</td>
<td>Limitations to its relevance?</td>
<td></td>
</tr>
<tr>
<td>Congruence is good</td>
<td>Does it work (is it necessary) with simple technologies?</td>
<td></td>
</tr>
<tr>
<td>Provides a language</td>
<td>Can it really help operationalise a PAR group?</td>
<td></td>
</tr>
<tr>
<td>Helps prepare for a PAR case study</td>
<td>Just because issues are identified doesn't mean that they can be overcome?</td>
<td></td>
</tr>
<tr>
<td>Allows to plan an end game</td>
<td>Is it testable?</td>
<td></td>
</tr>
<tr>
<td>Post case study evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifts the focus from the boundary object</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The participants were asked to identify their level of endorsement of the framework. The facilitator used a line-up approach to capture the responses in a visual way. Participants were asked to line up along the scale of:

- 1 – Lacks rigour, relevance and/or logic, therefore a waste of time to continue development;
- 5 – It has potential although needs quite a bit of time for adaptation and improvement (some rigour, relevance, logic);
- 10 – Has a great deal of potential, logic, relevance, rigour and only needs slight adaptation.

Figure A5.1 shows a picture of the project participants standing on a white line. The individual numerated scores that correspond to the position of the participants on the white line were 8, 8, 8, 8.5, 7.5, 7, 7, 6.5 and 5.5. This produced a median score of 7.5 out of 10 which highlights the potential useability of the theoretical framework.

Figure A5.1: Participants at the CSE009 workshop evaluating the conceptual model.
At the end of the workshop the facilitator asked the participants to write their response to the following three questions: 1. *What worked well for you?* 2. *What didn't work?* 3. *What did you find most valuable? Key lessons?* We now summarise the participants’ responses to each of these questions.

1. **What worked well for you?**
 - Interaction between participants
 - Clearly defined agenda
 - Use of the Hats Concept
 - Structure of the day: gave clear overview of the project from several angles; gave excellent opportunity to evaluate and provide feedback; blend of ‘project evaluation / feedback’ and ‘how to run a feedback / evaluation exercise’ was very cleverly done.
 - Facilitation of the workshop.
 - Interactions of the people.
 - Agenda / activities of the workshop.
 - Understanding of the framework / presentation of it.
 - Outcomes of the project so far / what it has been developed until now.
 - Having the diversity of people (skills, industry, background, organisations).
 - Attitude of participants
 - Articulating the model’s development.
 - The Six Hats
 - Highly structured.
 - Ice-breakers / introductions
 - The structure and tools used during the day worked well.
 - The hats.
 - Introductions.
 - Hats
 - ‘Hot potato’
 - Strict time management.
 - Mixing tables.
 - Hats
 - Hot potato
 - Mixing tables
 - Presentations on project
 - Workshop process, make-up and diversity of participants.
 - Group exercises and feedback e.g. Hot Potato, Hats.
 - Application of thinking hats to a specific topic.
 - Range of processes that were used.
 - Mixed group (organisations, experiences, skills etc)
 - Hats
 - Time management
 - Structure of the presentations, activities
 - Mixing up the groups.
 - Worked well – All
 - Mixing groups.
• Hot potato technique.
• Having a diverse and committed group.
• I liked having a clear agenda.
• Hats.
• The diversity of the group.
• Time spend sharing definitions.
• Emphasis on encouraging constructive dialogue / discussion.
• Structured process (e.g. Six Hats).
• Use of the Three Hats – nice way to critique / get feedback from model.
• Small group work – and mixing them.
• Did enjoy model presentation – and can see immediate application – was a good output from research.

2. What didn’t work for you?
• There was some cross interpretation of models being reviewed e.g. DSS or the social framework.
• Not that it didn’t work, but it might have been nice to have (time permitting) the project team consider the opportunities arising from discussions and provide feedback to the group on how they’d like to progress.
• Doing some of the very important activities after lunch / afternoon tea i.e. when less fresh (not sure how to overcome this; need green hat).
• Some confusion with the framework being referred to as a model and the DSS being referred to as a model.
• Bit slow in the morning – audience quick to understand; too much time spent before discussing the actual project; adults bore more easily than children – experienced, less likely to find novelty.
• Can’t think of anything worth mentioning (5 comments).
• Relationships within framework somewhat unclear.
• No agenda prior to the meeting.
• No project background prior to the meeting.
• I would have liked to have seen practical recommendations from the case studies that could be translated to other projects (more of the framework implementation).
• Improvement: given how well it worked, would have been nice to have a bit more time at the end; could we have asked the group if they were interested in extending the workshop for 30 or 60 minutes?
• Probably would have enjoyed drawing out people’s experiences more, as there were parts in there that could have helped to ‘validate’ the model some more. This actually did work, but maybe we could have got more from it.
• Sometimes difficult to get a sense of priorities regarding the cautions / opportunities discussed in the Six Hats exercise.
• Was a long lead in to get to the model presentation – but can see logic and why…

3. What did you find most valuable? Key lessons?
• Facilitation Techniques: Defining skills and roles of participants to set scene; defining objectives by breaking down key aspects of the workshop objectives.
• Learned an excellent method for conducting constructive project evaluation / feedback.
• Learned some great tips for getting the best out of group interaction (I usually find butcher’s paper session a serious waste of time; it was really valuable this time!).
Understanding of the framework.
About different views of the people in the workshop.
Understanding of what could be improved.
What the limitations of the framework are.
Clear meaning of terms used.
Most value: interactions of people / different views of an issue / framework.
Peers critical review.
Opportunities to: add value; interact; share; improve.
The process of engagement between people of diverse perspectives / disciplines / organisations.
Learning about the framework.
Using the hats as a way to evaluate / critique a concept.
Lot of learning about developing a common language.
Methods of describing processes that we all use but have not reflected upon.
Procedures to get people to share and build knowledge together; great for interdisciplinary work, for breadth – I don’t find this as personally satisfying as the depth achievable with within disciplinary discussion.
Alternative approach to adoption of complex technology
Some issues are fundamental to the problem regardless of methodology / framework.
Possibilities for collaboration with project team.
Framework concepts.
Variations to / in group activities.
Diversity in aspect / approach.
Value of mixed group (tie in with above).
Understanding the framework.
Saw two examples of the application of the framework and how the technology adaptation could continue.
Adoption process is dependent ultimately on the technology but common issues / factors exist that can be drawn together in a framework.
All the input from the others attendees (and some specific ones).
The process employed and where else it could help me.
Important to define terms / definitions.
Have now seen the Hats in use – very good tool.
Better understanding of the framework.
Meeting new people.
Opportunities for improving the model.
Catching up with others and learning about their research.
Just a really positive day.
Valuable to get constructive feedback on the model.
Supportive approach to improving the framework e.g. identifying existing methods / practical approaches to operationalise the framework.
Very useful conceptual framework for dialogue, planning and evaluating technology development and adoption processes.
Usefulness of De Bono’s hats in this context.
The ‘x-factor’