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Executive Summary 

 

There is currently no operational method of managing irrigation in Australia’s sugar industry 

on the basis of systematic, direct monitoring of sugar plant physiology. Satellite remote 

sensing systems, having come a long way in the past 10 years now offer the potential to apply 

the current ground-based ‘FAO’ or ‘crop coefficient (Kc)’ approach in a way that offers a 

synoptic view of crop water status across fields. In particular, multi-constellation satellite 

remote sensing, utilising a combination of freely available Landsat and Sentinel 2 imagery, 

supplemented by paid-for imagery from other existing satellite systems is capable of 

providing the necessary spatial resolution and spectral bands and revisit frequency. The 

significant correlations observed between Kc and spectral vegetation indices (VIs), such as 

the widely used normalised difference vegetation index (NDVI) in numerous other crops 

bodes well for the detection and quantification of the spatial difference in evapotranspiration 

(ETc) in sugar which is necessary for irrigation scheduling algorithms. Whilst the NDVI may 

not serve as the appropriate index for sugarcane, given the potential of the NDVI to saturate 

at the high leaf area index observed in fully developed cane canopies, other VIs such as the 

Green-NDVI (GNDVI) may provide the response required. In practise, with knowledge of an 

appropriate Kc-VI relationship, Kc obtained from time-series (weekly) remotely sensed data, 

integrated with local agrometeorological data to provide ETo, would provide estimates of ETc 

from which site-specific irrigated water requirements (IWR) could be estimated. The use of 

UAVs equipped with multispectral sensors, even active optical sensors (AOS), to ‘fill the 

gaps’ in optical data acquisition due to cloud cover is conceivable. Cross calibration of any 

passive imaging system, as with the multi-constellation satellite data is essential. The use of 

radar images (microwave remote sensing) (for example, Sentinel 1&2 C-SAR, 5m) offers all 

weather, day-and-night capabilities although further work is necessary to understand the link 

between the radar back scatter, which is responding to surface texture, and evapotranspiration 

(and Kc). Further R&D in ascertaining the Kc-VI relationships during crop growth is 

necessary, as is the testing of multi-sensor cross-calibration and the relationship between 

radar remote sensing and Kc. Existing irrigation advisory delivery systems in Australia such 

as IrriSAT should be investigated for their applicability to the sugar industry. The estimated 

season cost to a user for a sugarcane irrigation advisory service in Australia, based on the use 

of data from existing optical satellite imaging systems and utilising the Kc approach, is likely 

to be of the order of US$2-3/ha.  
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Key Recommendations 

The realisation of an operational remote sensing-based irrigation scheduling tool for the sugar 

cane industry requires the following: 

1: A investigation of the accuracy and limitations of both model (eg P-M) and empirical (eg 

Kc-VI) approaches in using remote sensing to quantify the water use/demand of sugarcane 

crops in key Australian’s cane producing regions; 

2: Foremost consideration be given to utilising the NDVI –Kc- canopy ground cover (fc) - 

sugarcane LAI pathway for predicting sugarcane water demand and crop water productivity. 

3: The scoping/specification of an information delivery system, including evaluation of the 

suitability of existing delivery systems such as IrriSAT, suited to the requirements and data 

access capabilities of Australian sugarcane growers;  

4: An investigation of the use of satellite based radar as a means of augmenting or replacing 

optical satellite systems for deriving crop water use and irrigation requirements of sugar cane 

under Australian conditions; and 

5: An evaluation of alternative platform such as unmanned autonomous vehicles (UAVs), and 

sensor payloads (eg active optical sensors- AOS, thermal imaging) to overcome the weather-

based limitations of satellite based sensor systems, or for their capacity to operate as a stand-

alone irrigation scheduling tools, factoring in outputs from 1-3 above. 

. 
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List of Abbreviations 

ALEXI  Atmosphere‐Land Exchange Inverse 

AOS  Active optical sensor 

ASTER  Advanced Spaceborne Thermal Emission and Reflection Radiometer 
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P-M  Penman-Monteith method 
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Rn  net radiation at the surface 

RS  Remote Sensing 

SAR  Synthetic Aperture Radar 

SAVI  Soil Adjusted Vegetation Index 

SEBAL  Surface Energy Balance Algorithm for Land 

SEBS  Surface Energy Balance System 

SPOT  Satellites Pour l’Observation de la Terre or Earth-observing Satellites 

SWB  Soil Water Balance 

SWIR  Shortwave infrared 

Ta  Air temperature 

TR/Ts  Surface temperature 

Tc  Canopy temperature 

To  Near-surface vertical temperature gradient 

TIR  Thermal infrared  

UAS  Unmanned Aerial system 

UAV  Unmanned Aerial Vehicle 

VI  Vegetation Index 

VITT  Vegetation Index / Temperature Trapezoid 
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1. Introduction 

Irrigated agriculture is under pressure not only to improve water use efficiency for 

sustainable water management, but also to meet an increasing demand to feed an ever 

growing population (Van Vuuren 2011).  Effective irrigation water management assumes a 

space and time optimization of water inputs across each crop field, and judicious water use 

requires the water requirement of the crop must be determined at different growing stages 

(Labbé et al. 2012). Sugarcane is cultivated extensively under irrigation all around the world, 

however there is continued pressure on the limited water resources available to the sugar 

industry because of competition with other crops and an increasingly unpredictable climate in 

growing regions (Jarmain et al. 2014). Even 13 years ago surveys of  sugarcane farmers 

indicated the need for more information on techniques for maximizing water use efficiency 

(WUE) in utilizing limited water resources and minimizing the loss of production associated 

with reduced water availability (Olivier and Singels 2004). Despite numerous available tools 

to assist producers with irrigation scheduling strategies (Culverwell et al. 1999), these are not 

widely used by producers for various reasons. Past research and practical experience dictates 

that tools for irrigation management on the farm should be simple, understandable and 

manageable to be adopted by growers (Santos et al. 2008; Jarmain et al. 2014; Toureiro et al. 

2016). This review explores the usefulness of remote sensing (RS) based methods for 

irrigation water management, and irrigation scheduling for general crops, and in particular for 

sugarcane crops. The main body of the report focusses directly on operational dimensions of 

remote sensing for irrigation scheduling for sugarcane. The review then discuss the strategies 

for RS based sugarcane irrigation scheduling in Australia. A detailed Appendix provides 

necessary background to the fundamentals of sugar cane growing and biophysical processes 

and parameters which need to be understood in designing an appropriate scheduling tool. 
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2. Operational challenges and strategies for RS based 

sugarcane irrigation scheduling in Australia 

Currently in sugarcane growing regions in Australia, sugarcane irrigation scheduling is based 

on traditional (non-remote-sensing) data sources, where the day-to-day estimates of crop 

water requirements are performed using the limited available agrometeorological station and 

field data (Attard et al. 2003). The point at which soil water may become limiting to yield 

accumulation is determined by stalk elongation measurements and atmospheric evaporative 

demand as measured indirectly using mini-pans (Shannon et al. 1996). In some sugarcane 

subregions, the irrigation scheduling information is communicated to the end-user in various 

forms, for example irrigation time or water volume (Attard et al. 2003). The process is not 

only labour intensive and costly but is time consuming and often unable to cover each field in 

extended areas at the often necessary short time intervals (Inman-Bamber et al., 2005; Inman-

Bamber and Attard, 2005; Watertrack, 2017).  

Research in other crops has shown improvements in irrigation scheduling in terms of accurate 

water-use estimation and more appropriate timing of irrigations when crop coefficient 

estimates derived from remote sensing (RS) based vegetation index (VI) were incorporated 

into irrigation-scheduling algorithms (e.g., example, Bausch 1995; Neale et al. 1996; 

Hunsaker et al. 2003; 2005; Singh et al. 2016; Toureiro et al. 2016).  Studies, again in other 

crops have shown NDVI to be closely related to the water-use and transpiration of the plants 

(e.g., González-Piqueras, 2006). Therefore, reliable relationships between NDVI and crop 

coefficients (Kcb and Kc), and/or RS/NDVI derived crop parameters (e.g., LAI, fc) and Kcb 

and Kc, are the most likely candidates for RS based irrigation management and scheduling for 

sugarcane in Australia, especially given the limited work reported for sugarcane (e.g.,  

Jarmain et al. 2014; Singh et al. 2016). Generally, a correlation equation needs to be defined 

to relate biophysical crop parameters (LAI, fc) with NDVI (or other VIs) and Kc/Kcb. Time 

series NDVI can be used to monitor crop growth and to derive crop biophysical parameters 

for the entire growing season. The crop coefficient maps could be created by dividing the ETc 

maps derived from surface energy balance equation (e.g., SEBAL, METRIC, etc) by ETo. 

The ETo maps themselves would be generated by interpolation of weather data located close 

to the target area. The Kc value is interpolated between each image date to define the 

temporal evolution of Kc values and to obtain the Kc curves (Santos et al. 2008). The RS 

based ETc is then combined with a water balance model to provide accurate irrigation 

scheduling guidelines for individual fields.  
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2.1 Scoping sugarcane producer requirements 

The precise information on the condition of every pixel of sugarcane field (e.g., water 

requirement) and irrigation recommendations empowers growers to make smart irrigation 

decisions. The combined use of up-to-date, high resolution satellite data on field status with 

local weather conditions and field-tested agronomy models helps irrigation authorities to 

anticipate their expected irrigation requests by matching irrigation schedules to actual crop 

water requirements. Getting irrigation just at the right time and amount can make the 

difference between productive, profitable, consistent and sustainable sugarcane production. 

The RS based irrigation management system must pay attention to the three basic tenets of 

market services; namely- 

(a) Timely acquisition, or coordination of acquisition with data provider given components of 

a satellite virtual constellation;  

(b) Timely post- processing of data, including inter-satellite calibration, product generation 

and quality checking; and  

(c) Integration into the delivery system and capability of providing timely access to end users 

(irrigators and farmers).  

2.1.1 Spatial and Temporal resolutions of RS data 

The RS data required at an operational level must meet the appropriate temporal and spatial 

resolutions for irrigation scheduling needs. The spatial resolution of imagery must match with 

the irrigation field sizes, and also the scale at which the imagery be used: farm level, local-

regional level. The required spatial resolution must also ensure the presence of a sufficient 

number of meaningful pixels specific to sugarcane after the internal buffer is applied to each 

field boundary (edge effect) and also after removal of other adjacent features such as roads, 

trees, etc. In addition, the desired spatial resolution should also be high enough to detect 

within field variations and, if required, intra-field variability.  

 

Ultimately, a very high spatial and temporal resolution RS dataset is required to get daily ETc 

for soil water balance to determine field-based ETc demands and subsequent field-scale 

irrigation schedules. Time series maps of relevant parameters such as crop coefficient will 

need to be at a spatial resolution of 10–30 metres, and certainly no lower. This resolution 

allows for identifying sugarcane plots of 1000–10000 m2, which cover the size ranges most 

frequently found in irrigated sugarcane fields in Australia. Sub-field spatial resolution is 
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necessary (1-5 m) if the user seeks to identify candidate locations for supporting on-ground 

infrastructure such as Soil Moisture Probes, Telemetry and other Proximal Sensors. The 

second component is to provide tools to handle spatial data and distribute irrigation 

information to the farmers or irrigators. In addition, sugarcane irrigation advisory cycles of 7-

10 days are necessary, and at higher frequencies if possible. During the peak growth periods, 

sugarcane growth and associated changes in crop coefficients can be significant. Therefore 

time-series RS data at a seven day interval are required to generate weekly irrigation advice. 

Temporal resolution of 7 days is important, and in cases of poor weather condition or cloud 

cover that interferes with the image quality, the RS data from other sources such as UAV 

(Unmanned Aerial Vehicle) or Radar can be used to fill the data gaps. Cloud cover is 

definitely a limiting factor regarding the availability of multispectral satellite imagery, 

particularly in northern QLD, where it is possible to go few weeks at a time without having a 

suitable satellite (Landsat/Sentinel 2) image.  

2.1.2 Sugarcane growing season 

Across the sugarcane growing regions in Australia, sugarcane planting starts in mid March 

and continues until late September, while ratooning begins in early June and continues until 

late November or early December.  This suggest that there is always a developing canopy 

(i.e. crops between 0-4 months of age) in almost every month of the year.  This would 

suggest that the need for regular satellite images is required for almost the entire 12 months 

of the year. 

2.2 Remote sensing systems available to provide the required spatial and 

temporal resolution for sugarcane irrigation scheduling 

Table 1 lists currently available, multispectral satellites systems that offer a spatial resolution 

in the desired range, along with details of coverage, revisit frequency and indicative cost (in 

US dollars, July 2017). The US Geological Survey allowed open and free access to 

georeferenced Landsat (30m) and ASTER (15m) data and the European Space Agency 

similarly offers free access to Sentinel-2 (10m) images (https://earthexplorer.usgs.gov/). A 

range of commercial sensors offering very high spatial resolution of 1–5m (for example 

Worldview3/2, QuickBird2, GeoEye1/2, SPOT6/7, RapidEye, PLEIADES) at cost offers the 

potential of monitoring smaller size fields and within-field spatial variability. The medium 

resolution satellites DMC and DEIMOS offer very frequent land observations with increasing 

capabilities with modest data costs (Table 1).  
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Table 1 Optical remote sensing satellite sampling characteristics in the virtual constellation 

(cost as of July 2017). 

 

The revisit capabilities of the freely available high-resolution satellites (Landsat, ASTER, 

Sentinel-2) ranges between 10–16 days, and considering the potential presence of clouds on 

the day of satellite pass, the resulting single-satellite revisit time of any given area would 

likely be insufficient for operational irrigation scheduling tasks. Meeting an irrigation 

advisory cycle of 7-10 days requires access to a combination of currently available high-

resolution satellites in a virtual constellation. For example, revisit cycles of Landsat 8 (OLI) 

and Landsat 7 (ETM+) have offset of 8 days from each other, therefore combining two 

provides full coverage of every 8 days (Figure 1b). For Landsat 7, SLC-off is a problem as it 

causes striping and therefore it is necessary to combine at least 2-3 overpasses to get a “complete” 

Landsat 7 image. Table 2 shows the RS and field based derived parameters for sugarcane 

growth monitoring and irrigation planning, and RS data descriptions (spatial and temporal 

scale, frequency, cost and coverage) for these measurements.  

Satelliete/Sensor

Spatial 

Resolution 
Multipscetral bands 

(optical, NIR and SWIR) Revist Cycle Swath Cost*

Landsat 8 OLI 30m B,G,R,NIR,SWIR1,SWIR2 16 days 170km x 185 km Free

Landsat 7 ETM+ 30m B,G,R,NIR,SWIR1,SWIR2 16 days 185km x 185km Free

Sentinel-2A 10m B,G,R,NIR 10 days 290 km x 290km Free

Aster 15m G,R,NIR 16 days 60km x 60km Free 

SPOT6/7 6m B,G,R,NIR 1-5 days 60km x 60km $1.20/Km2

RapidEye 5m B,G,R,RedEd,NIR 1 day 77km x 77km $1.28/Km2

GeoEye1/2 1.8m, 1.24m B,G,R,NIR <3 days 15km x 15km $17.5/Km2

WorldView3 1.24m B,G,Y,R,RedEd,NIR1,NIR2 <1 day 13km x 13km $22.5/Km2

WorldView2 2m B,G,Y,R,RedEd,NIR1,NIR2 1-2 days 16km x 16km $12/Km2

QuickBird2 2.4m B,G,R,NIR 1-4 days 16km x 16km $17.5/Km2

Plaides-1A 2m B,G,R,NIR Daily 20km x 20km $11.6/Km2

Planet 3m B,G,R,NIR Daily 20km x 12km on inquiry

DMC 22m G,R,NIR 1-2 days upto 620KM $0.31/Km2

Deimos1 22m G,R,NIR 2-3 days up to 625 km $0.07/Km2

B=Blue (0.4-0.5µm ); G = Green (0.5-0.6µm );  R = Red (0.6-0.7µm ); NIR=Near Infrared (0.7-1.3µm ), NIR1 

(0.77-0.89µm ), NIR2(0.86-1.04µm ); SWIR = Shorwave Infred (1.3-8µm ), SWIR1=(1.55-1.75µm ), 

SWIR2(2.09-2.35µm ); RedEd = RedEdge (0.70- 0.74µm ); Y = Yellow (0.58-0.62µm )

 * tentative cost in USD (source: https://apollomapping.com/)

Multispectral (MS) Data
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(a) Sugarcane regions in 2017 Landsat 8 data coverage Sentinel 2 data coverage  

                          

(b)  Landsat 7  Landsat 8   Combined 

(c) Path/Row of Landsat 8 and Scene Id of Sentinel 2 over the sugarcane growing regions  

Mill Region Landsat 8  Sentinel 2 Scene Mill Region Landsat 8 Sentinel 2 Scene 

Atherton 96/72 55KCA 55KCB Isis 90/77 56JMT 56JLT 

Broadwater 89/80 56JNN 56JNP Mackay 93/75 
93/74 

55KGS 55KFS 

Bundaberg 90/77 56JMT 56JLT Maryborough 90/78 56JMS 

Burdekin 94/74 55KET 
55KEU 

Proserpine 93/74 55KFT 

Condong 89/80 56JNP Sarina 92/75 
93/75 

55KGS 
55KGR 

Gordonvale/Mulgrave 95/72 55KCA 
55KCB 

South Johnston 95/72 55KCA 

Harwood 89/80 56JNN Tully 95/73 
95/72 

55KCA 55KCV 

Herbert 95/73 55KCV 55KDV    

Figure 1 Sugarcane growing regions in Australia in 2017 and coverage area of Landsat 8 and Sentinel2 (a); 

Combined coverage of 8 days (Landsat 8 &7) (b); and Path/row of Landsat 8 and Sentinel 2 (c). 
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Figure 2 shows the revisit dates of the freely available satellites (Landsat-8 OLI, ETM+ and 

Sentinel-2A) during the 2015-16 and 2016-17 growing seasons of four major sugarcane 

growing areas in Australia (e.g., Burdekin, Bundaberg, Maryborough and Isis). An indicative, 

characteristic crop coefficient (Kc) curve of sugarcane, based on FAO-56, has been 

superimposed on each plot to illustrate the phenological cycles of sugarcane grown in each 

respective area. Typically planting-ratooning occurs during August-October, initial growth 

(25%-50%) between November and December, full plant cover (100%) exists around January 

to May and senescence/harvest occurs around June-July.  

During the 2015-2016 growing season (Nov-Oct), only from Landsat OLI and ETM+ sensors 

were freely available and there were more gaps (in days) between satellite overpasses to 

obtain cloud free data for all four growing areas, particularly during initial and mid growing 

seasons. However, after free online access to Sentinel-2A images became available in 

November 2015, greater flexibility to acquire cloud-free scenes resulted in fewer gaps at the 

end of growing season, and also for the beginning of 2016-17 growing season. This is more 

evident in Burdekin, Bundaberg and Isis regions. However weekly irrigation advisories for 

the entire growing season (4-8 months) cannot be supported by the freely-available satellite 

systems on their own; the 2015-16 and 2016-17 (till March 2017) periods do not indicate that 

degree of temporal coverage is available. In such cases other high resolution satellite data 

such as SPOT 6/7, RapidEye, DMC, Planet and Deimos1 could be used to fill these gaps in 

the time series, albeit at cost to the user.  

Notwithstanding the issue of revisit frequency and cloud free imagery, the delivery time of 

images can often be of the order of days, and in some cases weeks, unless particular 

arrangement are made with data providers for rapid delivery. In the context of a weekly (or 

better) advisory service, data can, and should, be  made available within a few hours after 

image acquisition time, and the common arrangement is for direct download by means of file 

transfer protocol (FTP). This is no longer a big ‘ask’ from providers; ten years ago the 

DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation 

advisory services) project in Europe was capable of offering Lansdsat 5-TM satellite data 

acquired at 10:30 GMT on the same day at 15:00 GMT (Belmonte et al. 2005). Rapid access 

to data may incur a processing fee and it is worth checking with providers. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 2 Temporal evolution of sugarcane crop coefficient (Kc) based on FAO-56 and corresponding 

satellite overpasses for Landsat OLI, ETM+ and Sentinel-2A during 2015-16 and 2016-2017 (till March 

2017) growing season (Nov-Oct) in Burdekin, Bundaberg, Maryborough and Isis regions. 
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2.2.1 Cloud free data from other sources (UAV, Radar) 

UAV systems offer the ability to fill the gaps if advisory data is urgently required. If having 

to use UAVs, unless the instrument is owned and operated by the grower, the costs would be 

prohibitive on such a short return monitoring interval as 7 days. Also, the use of radar based 

satellite systems images (microwave remote sensing) as another possibility. Details on this 

can be found in appendix sections A3.1.2 and A3.1.3 of this document. It must be emphasised 

that the backscatter signals from radar systems is based on the physical structure of a canopy 

rather than leaf pigments such as chlorophyll. Radar data from Sentinel 1 is free and has good 

repeat cover, however it is difficult to interpret in regard to sugarcane due to its high 

sensitivity to soil moisture. Nevertheless studies have shown sensitivity of radar data to 

sugarcane growth stages and also similar variation as NDVI change in time-series (for 

example, Baghdadi et al. 2009). Thus combination of the radar Sentinel-1 and the optical 

Sentinel-2 (a & b)  systems could conceivably be used to create radar-NDVI relationships, 

and during periods of cloud cover the radar-only platform could then be relied upon to 

provide a surrogate for the NDVI. More research work is needed to identify and evaluate the 

links between backscatter and crop coefficients. 

2.2.2 Crop Water Use (ETc) 

Crop water requirements (ETc) can be estimated through reference evapotranspiration (ETo), 

and a crop factor called crop coefficient (Kc) as ETc = ETo * Kc (more details can be found in 

appendix section A1.2).  For a specific crop in a single location, computing Kc by direct 

methods (lysimeters, energy balance, and soil water balance) is difficult and expensive. In 

such situation, generic Kc values are typically used, which often do not match the actual crop 

water use due to several factors (differences in canopy and agronomic management, row 

spacings, etc). Indirect methods can be used for this purpose to provide site specific crop 

coefficients. Studies have shown sugarcane Kc to be closely related to the canopy ground 

cover fraction (fc) and LAI which can be estimated from RS-derived NDVI (equation 1, 2 and 

3). Thus, RS methodology integrates information from satellite sources (NDVI; Kc) and from 

on-ground weather stations (ETo) to estimate site-specific crop water requirements at each 

individual pixel. The Kc for all pixels are used to determine the crop coefficient for a field by 

calculating the arithmetic mean of all pixels within its boundary. At plot level, time series Kc 

maps at an interval of 7-10 days and spatial resolution of 10–30 m are required, and if the 

estimated Kc or LAI is to be fed into a crop model (e.g., IrrigWeb) then periodic adjustment 
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would be acceptable. The cloud-affected pixels in the satellite image should be identified and 

removed. The missing pixels can be backfilled with secondary satellite data, to derive 

blended NDVI. This is used to compute Kc at pixel level and then aggregated for the entire 

paddock.  This spatial algorithm can be reused for time series data processing. 

2.3 Algorithm generation, data processing, product generation and validation  

The coordinated use of data sourced from different satellite systems in a virtual constellation 

would require inter-satellite cross-calibration and image co-registration. For this purpose, 

Calera et al. (2001) has developed a multi-temporal data-synthesising procedure that uses 

synchronous, or near-synchronous, imagery from different sensors over the same ground 

footprint. They showed that reflectance and vegetation indices obtained from different 

spectral bands of different sensors can be compared with high reliability by means of simple 

correlation procedures. Mart´ınez et al. (2003) demonstrated the joint use of multi-temporal 

multisensory data with some acceptable spatial degradation. The basic processing comprised 

of geometric and atmospheric corrections, reflectance estimation, NDVI computation, 

calculation of Kc maps and other products. This operational procedure assures two points of 

RS data quality control; detection of cloud cover, and accounting for the values of maximum 

NDVI for completely green cover and the minimum NDVI value for bare soil. These quality 

controls enhance the reliability of the image sequence. Table 3 shows an examples of remote 

sensing based Sugarcane Irrigation studies conducted and types of data product generated in 

different parts of the world. 
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2.3.1 Sugarcane Crop Coefficient (Kc/Kcb) 

As discussed earlier, the crop coefficient (Kc) provides an insight into water constraints and, in 

the light of previous work undertaken, Kc can potentially be derived directly from satellite 

images. The sugarcane Kc curves shown earlier in Figure 2 aid to identify growth periods where 

high temporal resolution of image data is required (that is prior to or following the plateau in 

the stage).  Here, the simplest approach is to utilise the linear relationship between NDVI 

(derived from the red and near infrared reflectance) and Kc following Moran et al. (1997). 

Ratio-based VIs such as the NDVI are well suited to inter-satellite sensor cross-calibration 

(Calera et al. 2001; Teillet et al. 2001; Steven et al. 2003). Little information is available in the 

scientific literature concerning the sugarcane Kc-NDVI relationship (most is concerned with 

yield-NDVI relationship). Work on other crops is certainly encouraging, including corn 

(Bausch and Neale 1989; Bausch 1993; 1995) and vineyards (Vuolo et al. 2015a).  

Recently, Zhang et al (2015) used time-series Landsat-7 to establish the relationships between 

Kc, canopy ground cover (fc), and NDVI over two sugarcane fields in Hawaii: 

 

fc (sugarcane) = 1.312*NDVI (sugarcane)  – 0.1921  (R2 = 0.97)   (1) 

Kc (sugarcane) = 0.7489 * fc (sugarcane) + 0.2776  (R2 = 0.89)   (2) 

 

The study effectively linked Kc to NDVI via linear relationship. Bappel et al. (2005) 

determined the exponential relationship between sugarcane LAI and NDVI generated from 

time-series SPOT 4 & 5 images as: 

 

LAI (sugarcane) = 0.0407 * Exp (7.0345 * NDVI)    (R2 = 0.86)  (3) 

 

Using the empirical relationship defined by Bappel et al. (2005), In South Africa, Bastidas-

Obando et al. (2017) estimated LAI for sugarcane from NDVI derived from Landsat7 TM 

time-series to calculate an hourly variable canopy resistance (rc) value to predict sugarcane 

water demand and crop water productivity for both rain-fed and irrigated fields. More 

research is required to confirm the transferability of Equations 1-3 for different region, which 

includes the robustness of the NDVI at very high LAI values and/or at least the protocol for 

generating similar local relationships. 
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Since NDVI values are directly related to fc, it can be expected that the NDVI values would 

similarly be low at the initial sugarcane growth period, then peaking at full growth period, 

and then decreasing at the final stage due to senescence of the crop. This ability of NDVI to 

detect sugarcane growth pattern including the senescence of the crop is important for 

irrigation management.  It is also important here to notice the duration of the growing phase, 

because studies have shown deviations from standard FAO reference values (for example 

Toureiro et al. 2016) will occur as a consequence of  variations in planting date and local 

climatic conditions. For fully established crops, it remains to be seen whether the NDVI is 

sufficiently responsive enough, or whether, as asserted by Rahman and Robson (2016), 

alternative indices should be explored. 

2.3.2 Local field Validation to establish sugarcane Kc/Kcb-VI relationship 

Some form of local field validation is likely to be required to establish the Kc or Kcb-VI 

relationship in a given sugarcane growing area for the entire growing cycle. The spectral 

response can be measured by means of a spectro-radiometer with a range of 0.3-2.3µm. The 

Kc and Kcb would be determined from green plant cover following Allen et al. (1998) for the 

entire growing period to see the temporal evolution of crop height, biomass, green plant 

cover, leaf area index (LAI), Kcb/Kc and VI. Determining Kc itself is not trivial and detailed 

evapotranspiration measurements are necessary, either directly using some form of 

evapotranspiration dome (for example as used by Murphy et al., 2004) or using lysimeters. 

These ground truth data samples distributed over the entire area (large and statistically 

significant) would be used to validate and calibrate the method to derive Kc from VI and also 

for on-going quality control of the RS-derived products. 

2.4 Information delivery for irrigation scheduling 

The decision whether or not to irrigate can be informed by a tool that utilises remote sensing, 

but ultimately the decision will also involve other sources of information such as impending 

rainfall, availability of water and other farm resources (for example staff to manage a cycle). 

Irrespective of whether other pieces of information need to be specifically included within a 

single decision advisory tool, the dimension of the tool that utilises the remotely-sensed data 

must present it in a way that is intuitive and fit for purpose- namely advising on the need to 

irrigate and how much water to apply. One approach is to simply create digital maps of crop 

water requirements (CWR) for irrigation scheduling and to distribute that information to the 

users by different means such as via the internet (for office or mobile smart phone access).  
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This would require that data be integrated into some form of geographic information system 

(GIS) to calculate CWR and generate irrigation scheduling information (for example, 

irrigation water volume or time, etc.) at the appropriate scale, such as plot level. Other 

information would likely need to include crop phenology data, for example from field based 

observations, certainly agrometeorological station data, reference climate data, possibly 

integrating rainfall radar data, last 24 hour rainfall, seasonal accumulated precipitation maps, 

and short/medium-term weather forecast maps. 

2.4.1 The need for ongoing evaluation of sugarcane irrigation advisory products and 

services 

The validation of any sugarcane irrigation advisory system can be carried out at both 

technical-experimental level and also at users’ level (information products, tools and 

services) using a range of evaluation methods. The modelled soil water balances can 

routinely be compared with logged soil water monitoring data (e.g., IRES, 

http://www.naturalresources.sa.gov.au/southeast/water-and-coast/Irrigation-

management/Irrigation-scheduling) designed to use irrigation records from growers as a 

scheduling and water management tool.   

The quality of RS-based sugarcane Kc/Kcb can be assessed by means of comparison with 

ground truth data from field data visits (for example, FAO based). The sugarcane Kc/Kcb 

values (averaged for different growth periods) derived from time series VI and the values for 

Kc-ini, Kc-mid, Kc-end from FAO-56 can be compared easily enough. With the local calibrations 

necessary to account for the soil evaporation effects, a benchmark of keeping any variance of 

Kc within tolerances of, for example ±5%  can be achieved using established, long term 

monitoring plots. 

The evaluation of any nascent RS-based irrigation advisory system can be undertaken by 

established (farmer or agronomic service provider) reference groups at each of the sugarcane 

growing areas (Burdekin, Bundaberg, Maryborough, Isis, etc.), not only for monitoring the 

veracity of any algorithms but also the delivery system(s). This approach could be based on 

the Producer Research Site (PRS) model utilised, with success, by Meat Livestock Australia 

(MLA).  

Belmonte et al. (2005) provides some key ingredients when it comes to delivering an 

irrigation advisory system, principal of which is the facility/capability to offer personalised 
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delivery layouts. Farmer feedback provided Belmonte et al. (2005) with other presentation 

ingredients, including incorporating information (RGB image) about spatial distribution of 

crop status (that is inside a homogenous crop and also crop vigour across each plot) as 

farmers are quick to develop-situational awareness from a ‘synoptic’ view, allowing intuitive 

interpretation of crop growth and water requirement over a given management unit. Also, the 

spatially resolved RS-based data products can easily be combined with plot boundary or 

water user group (WUG) data in GIS, which can allow personalization of the irrigation 

scheduling recommendation, if integrated into a simple text advisory message. 

2.5 What is the likely cost for a remote sensing-based sugarcane irrigation 

advisory service? 

The annual cost of RS-based irrigation scheduling services for sugarcane in Australia, based 

on providing basic products such as Kc maps derived from NDVI, can be estimated based on 

utilising cloud free (<5%) Landsat, Sentinel 2A and ASTER data (available free of charge), 

and other satellite data sources at cost to the user (for example SPOT6/7, RapidEye, etc) to 

fill the temporal gaps in the time series. On average, 36 images (3 images/month x 12 

months) would be required for the entire sugarcane growing season (Nov-Oct), including 

planting/ratooning. The data cost in Table 1 is given in terms of USD/km2, that is, for each 

100ha of irrigated land. The costs (USD) to users for image purchase, personnel cost for data 

processing and product generation and data transfer for a given area can be computed on the 

basis size of irrigation area and number of images purchased.  

The additional cost of RS based service would have to be evaluated against the potential 

benefit that is added as compared to existing advisory services (e.g., IrrigWeb or any other 

crop model). If data from another platform such as UAV or fixed camera is used, there will 

be added cost in terms of UAV and camera purchase, software and processing costs, 

obtaining license and training, etc.  In addition, for large scale monitoring, a large volume of 

data and considerable post-processing are required. Not doubting the potential of UAV data 

in providing very high resolution cloud free data in real time and on demand, its use can be 

restricted to filling data gaps in time-series to minimize costs and efforts in irrigation 

management tasks.  

For the satellite-based grapevine irrigation advisory service, IrriEye, in the South Australian 

Murray-Darling Basin, Vuolo et al. (2015a) estimated the cost to be around US$8–11/ha (> 
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300 ha aggregated area) with 10–11 image acquisitions from DEIMOS-1 satellites during the 

entire irrigation season. They pointed out that, with the expected reductions of market prices 

of high resolution satellite images, including the use of freely-available systems, the RS-

based irrigation services will become even more cost-effective in the near future. At the 

present rate of DEIMOS-1 satellites (Table 1), for the same area of 3000 ha with 10-11 

images, the RS-based irrigation service cost can be estimated to be US$2-3/ha. Additional 

cost is also required for necessary ground truthing field work and for the quality-control of 

the RS-based products, and also for the generation of advanced products (fc, LAI, fPAR, 

biomass, irrigation performance indicators, water stress indicator, canopy water content, 

evaporative fraction). Vuolo et al. (2015b) analysed cost and benefit for different remote 

sensing data cost scenarios and evaluated the willingness of the farmers to pay for the 

information generated by the project in Austria. Their results clearly indicated that, the 

economic benefits could be achieved by reducing irrigation volumes, and farmers in general 

were willing to pay either directly or via cost sharing, for such a service. They calculated the 

cost of the service based on different cost scenarios (Variable costs – include the initial 

farmer’s database implementation and a dedicated customer service; and Fixed costs – 

service coverage/area, satellite data acquisition and processing. For a 20,000 ha regularly 

irrigated land, they estimated advisory service cost between 2.5 and 4.3 Euro/ha per year 

depending on the type of satellite data used. They concluded that, with a correct irrigation 

application, more than 10% of the water and energy could be saved in water-intensive crops, 

which is equivalent to an economic benefit of 40–100 Euro/ha per year.  

2.6 Comparison with other existing products 

There is always a need to compare data sources when modelling or even measuring crop 

water use. Competing forces between cost, accuracy, simplicity, reliability and repeatability 

all feed into the debate on which technology or method of irrigation scheduling is most 

appropriate. Sugarcane Research Australia (SRA) has identified interoperability with 

scheduling tools and big-data platforms to be very important, and hence any newly developed 

irrigation advisory services (e.g., RS-based) should be compared with the existing ones. This 

would not only help in evaluating service product accuracy (performance), but also in 

comparing additional benefits added by the new services and also in filling data gaps in time 

series. Existing programs and models such as Irrigweb, WaterSched, KMSI, BOM databases, 

CSIRO soil databases (ASRIS) and many more would/should soon be able to “communicate” 

with other sources of data for better integration into Decision Support Systems. 
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Knowles (2015) examined several properties of IrriEye datasets (http://www.irrieye.com) in 

the Bookpurnong Irrigation District in Riverland of South Australia and compared the results 

with more commonly used techniques of soil water monitoring and ETo-driven soil water 

balances. He found little correlation between the two methods of estimating crop water use as 

IrriEye data over-estimated the amounts of irrigation compared to the ASCE method of crop 

water scheduling computation. He pointed out that, although it is difficult to measure true 

crop water use, a comparison between well-tested methods can give some confidence of 

validation.  

2.6.1 eLEAF 

For sugarcane production, eLEAF (http://www.eleaf.com/?page_id=3316) is a Netherlands 

based developer that applies meteorological and RS based data to quantify crop, water and 

climate parameters at pixel level. This technology is called Pixel Intelligence Mapping 

(PiMapping). eLEAF directly measures crop biomass and the water that is actually consumed 

by the crop in a certain period of time, and differs substantially from conventional RS based 

methods of using NDVI with historical biomass production time series to estimate a current 

figure (Bastidas-Obando et al. 2017). For sustainable irrigation management, eLEAF’s 

IrriLook application is an irrigation planner based on the soil water balance that uses specific 

data on soil properties, satellite data and user-specified ground water level and irrigation 

inputs. This information is coupled to the weather forecast to provide irrigation advice 

directly to the farmer for the coming days. IrriLook has been tested and validated extensively 

in the Netherlands, and subsequently has been successfully implemented in South Africa, 

Egypt, Ethiopia and Sudan. 

2.6.2 IrrigWeb  

IrrigWeb (http://www.irrigweb.com/) is a sugarcane irrigation scheduling tool for the sugar 

industry and provide irrigators with current and local advice on sugarcane crop water use and 

development. IrrigWeb uses a sugarcane crop model, CANEGRO, to calculate sugarcane 

crop water use and yield outputs. The tool combines crop water use estimates with user-

defined irrigation system constraints and crop cycle inputs to schedule future irrigation 

events. Meteorological data are obtained daily from Queensland Government’s SILO 

application and local weather stations as inputs for the model.  
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2.6.3 GoSAT and Goanna Telemetry 

For RS based irrigation decision making, Goanna Telemetry ( 

https://www.goannatelemetry.com.au/ ) provide a combination of tools and technology for 

water scheduling and crop monitoring based on the IrriSAT technology, Goanna weather 

stations and their soil moisture probes. The use of IrriSAT technology on the Goanna Soil 

Total Graph enables more accurate prediction of the irrigation data with the crop ETc and 

forecasted daily water use. Goanna provides imagery from two Landsat satellites and one 

Sentinel2a and NDVI and NDRE imagery are provided regularly from the GoSAT. A part of 

the GoSAT reporting provides forecasted 10 day rainfall and Min and Max air temperatures 

and other historical parameters accessible at specific field location. 

2.6.4 IrriSAT 

IrriSAT is a weather-based irrigation management and benchmarking technology that 

calculates Kc from relationships with NDVI derived from Landsat and Sentinel data and 

provides site-specific daily crop water use and a seven day crop water use forecast at low cost 

and across a large spatial area. Seasonal crop water use is combined with yield data to 

provide a measure of crop productivity. IrriSAT is moving weather-based scheduling into the 

future. The free IrriSAT app (https:// irrisat-cloud.appspot.com) automates satellite 

processing and information delivery of satellite data and provides water management 

information to assist in irrigation scheduling and crop productivity benchmarking. 

2.6.5 IrriEye 

IrriEye (http://www.irrieye.com/) is a satellite-based irrigation advisory system funded by the 

South Australian Murray-Darling Basin Natural Resources, and involves an Italian company 

(Ariespace s.r.l.) as the service provider. IrriEye provides real-time information on irrigation 

water needs at various spatial scales (from field and irrigation unit to district and river basin 

scale) and temporal scales (real time, historical). Irrigation water requirements are estimated 

using high resolution RS data and standard international methodologies. The information is 

communicated through Short text (SMS) and maps (email or web access) of irrigation 

volume expressed in cubic meters or duration of irrigation supply every 7 days. 
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2.6.6 WATERpak 

WATERpak is a field-based guide for irrigation management in cotton and grain farming 

systems. It provides growers the best available information on water use efficiency and water 

management based on latest research and provide technical and practical support for the 

cotton industry’s Best Management Practice program myBMP. In its latest version 

WATERpak can be read electronically on tablets and notebooks, with links to other on-line 

information sources so further information can be readily accessed.  

2.6.7 WaterSched 

WaterSched (http://watersched.net.au/default.aspx?ReturnUrl=%2f) is a web-based real-time 

tool developed by the Queensland Department of Agriculture and Fisheries using FAO56 

dual-crop coefficient methodology to model root zone water depletion. It provides guidance 

for irrigators and consultants on effective irrigation decisions. 

2.7 SWOT analysis on use of remote sensing data for Irrigation Scheduling in 

the Sugarcane Industry 

Table 4 shows the descriptive identifying strengths, weaknesses, opportunities and threats 

(SWOT) related to the use of remote sensing data for irrigation scheduling in the Sugarcane 

Industry. Australian sugarcane industry earth observation data requirements tend to reflect the 

best available public good data sources (e.g., Landsat, Sentinel2), and continuing close 

alignment with other space agencies will help to ensure continuity of supply. Overall, 

commercial data supply is strong, growing, and diversifying with increasing competition. 

Table 4  SWOT analysis on use of remote sensing data for Irrigation Scheduling in the 

Sugarcane Industry 

Remote 

Sensing data 

Strengths Weaknesses Opportunities Threats 

Low 
Resolution 

(AVHRR, 

MODIS, 
MERIS) 

>80m 

 High repetitive and global 
coverage, more suitable 

for regional studies. 

 Determine the spatial 
extent of irrigation at 

global scales. 

 Low image data cost and 
pre-processed datasets 

accessible.   

 Cost effective ways of 

monitoring irrigation in 
large areas is to use freely 

 Low spatial 
resolution 

 high technical 

difficulty required to 
produce maps 

 Medium to low 

application in 
irrigation 

scheduling.  

 Imprecise irrigated 

area estimation, 
especially in 

 Continuous observation 
program 

 Technical observation 

challenges solved.   
 Times-series analysis 

with other ancillary 

data.   
 In combination with 

medium spatial 

resolution data such as 

Landsat to calibrate 
irrigated area from 

 Continuity risk 
as a number of 

high quality low 

resolution 
optical 

instruments are 

being developed 
and also 

continuity risk 

with the aging 

and gradual 
degradation of 
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Remote 

Sensing data 

Strengths Weaknesses Opportunities Threats 

available vegetation 

index data from coarse 

resolution sensors like 
AVHRR and MODIS 

locations with small 

cultivated plots and 

fragmented 
landscapes. 

 Cloud free data 

acquisition is 
challenging, 

particularly in sub-

tropical region  

coarse resolution 

observations using 

regression 
 Determine the spatial 

extent of irrigation at 

global scales for 
accurate estimates of 

irrigated areas for water 

use assessments and 
food security studies. 

E.g.,  USGS Global 

Land Cover Map from 

1km AVHRR, 
European Space 

Agency (ESA) global 

land cover product 
using MERIS data 

the instruments 

(e.g., MODIS) 

 Latency loss 
may be the 

biggest risk 

 Securing 
funding for 

missions has 

been 
challenging 

 

Medium 

Resolution 

(Landsat 8 
OLI, DMC, 

Deimos1, 

Sentinel 2 
(10-30m) 

 Determine spatial extent 

and temporal distribution 

of crop development and 
to derive crop ET at field 

scale with a regional 

coverage and used widely 
for irrigation 

management project. 

 Worldwide continuous 

observation program with 
global coverage and 

accessibility to pre-

processed multi-spectral 
datasets within less than 

24-h of acquisition 

 Free (Landsat, Sentinel) 
and low to high data cost 

for others 

 Historical achieve 

(Landsat) can be used to 
evaluate water 

conservation plans to 

determine present and 
historical irrigation 

practices. 

 NDVI and other crop 

parameters (fc, LAI) 
derived from Landsat 

time series used to 

determine sugarcane 
water requirement and 

water use efficiency, 

distinguishing healthy 
irrigated lands from 

 Obtaining cloud free 

data is challenging 

and is a limiting 
factor over irrigated 

areas, particularly in 

northern QLD. 
 In case of Landsat 7, 

SLC-off is a problem 

as it causes striping 

and so even if there 
is an overpass a lot 

of area is not 

covered. It is 
necessary to 

combine at least 2-3 

overpasses to get a 
“complete” Landsat 

7 image. 

 Adoption of these 

technologies and the 
integration into the 

day-to-day routine 

operations of 
farmers is a complex 

process and 

favourable 

conditions depend 
on several technical, 

social, and economic 

factors 

 In the world of water 

resource management, 

Landsat has played a 
key role in providing 

objective and 

continuous data for the 
entire world, 

particularly in the arid 

region. Water-related 

benefits of Landsat 
imagery are also reaped 

globally to make 

informed decisions 
regarding irrigation 

management and 

efficient water 
allocation and use. 

 Website   https://remote

pixel.ca/ (Remote pixel) 

is one way to figure out 
the cloud problem, by 

selecting  an area and 

counting the number of 
sentinel/Landsat images 

that are cloud free over 

the areas, and then 

downloading the cloud 
free images.  

 Irrigation advisory 

service at this scale 
helps to make better 

informed decisions on 

irrigation and studies 
have shown that 

farmers in general 

 Failure of TIRS 

and loss of 

thermal data 
from Landsat-8 

is a potential 

continuity issue 
as there are no 

other current or 

planned thermal 

data sensors at 
this spatial 

resolution.  

 The emergence 
of newer actors 

leveraging 

advances in 
small satellite 

technology 

(under 500kg, 

and principally 
under 100kg) to 

create dense 

constellations of 
10’s or 100’s of 

low cost 

satellites is 

expected to 
create a 

significant 

market for high 
frequency 

(multiple daily) 

optical coverage 
at high and very 

high resolution. 

https://remotepixel.ca/
https://remotepixel.ca/
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Remote 

Sensing data 

Strengths Weaknesses Opportunities Threats 

uncultivated and non-

productive areas. 

 Thermal bands of Landsat 
are used for soil moisture 

determination 

willing to pay, either 

directly or via cost 

sharing, for such a 
service (e.g.,  Vuolo et 

al. (2015).  

 With a correct irrigation 
application, more than 

10% of the water and 

energy could be saved 
in water-intensive 

crops.  

 Based on DEIMOS-1 

and Landsat-8 time 
series data,   Vuolo et 

al. (2015) estimated the 

advisory service cost 
between 2.5 and 4.3 

Euro/ha per year for 

20,000 ha regularly 

irrigated lands in 
Austria 

 It has been 

estimated that 

the new market 
could account 

for 

approximately 
50% of total 

commercial 

high resolution 
data sales by 

2020.  

 Rapid revisit 

and efficient 
distribution may 

become as 

prolific a driver 
for the 

development of 

new satellite 

data as freely 
available data 

streams like 

MODIS, 
Landsat, and 

Sentinel. 

High 

Resolution 
(Planet, 

RapidEye, 

GeoEye, 
WorldView, 

Pléiades, 

SPOT6/7 etc. 
(1-6m) 

 Ability to  monitor 

smaller size sugarcane 
fields and within-field 

spatial variability, and  if 

required intra-field 
variability detection 

  Sub-field spatial 

resolution is necessary (1-
5 m) to identify candidate 

locations for supporting 

on-ground infrastructure 

such as Soil Moisture 
Probes, Telemetry and 

other Proximal Sensors 

 Commercial high 
resolution data with 

repeat cover time of 1-5 

days, along with freely 

available data 
(Landsat/Sentinel) can be 

a way to increase the 

number of cloud free 
images available (i.e. 

more repeat coverage 

equals more chance of a 
cloud free image) to meet  

temporal resolution of 

 Low spatial 

coverage in one 
scene, high data cost 

 To acquire image for 

a given area, in most 
cases a minimum 

image area, e.g., 100 

sq km restriction is 
applied. 

 More research is 

required to confirm 

the application of 
these data in 

irrigation 

management.  Cost-
benefit analysis is 

required for the 

integration into the 

day-to-day routine 
operations. 

 Complex process 

and favourable 
conditions depend 

on several technical, 

social, and economic 
factors 

 Daily high-resolution 

imagery provides 
unprecedented in-field 

detail, Global coverage 

scales with growing 
operations and 

solutions. 

 It does cost money, but 
satellites like Planet 

provide API which 

lends itself to web 

programing and App 
development for 

product deployment. It 

depends how useful the 
image bands are too i.e. 

RGB and NIR. 

 Seamlessly integrate 

into user’s apps and 
workflow with Planet 

APIs to Create dynamic 

field management zones 
on user’s areas of 

interest, instantly access 

data to analyse and act 
in-season and in-field 

 Commercial 

users dictate 
future priorities 

and so there is 

some risk that 
those priorities 

are not in 

alignment with 
Australian user 

needs. 

 Re-tightening of 

sub-50cm data 
restrictions by 

the U.S. Govt- it 

is open 
currently and 

also for the near 

future. It seems 

unlikely, 
however, if the 

restrictions are 

reimposed, the 
very high 

resolution data 

supply would be 
considerably 

reduced (except 



29 

Remote 

Sensing data 

Strengths Weaknesses Opportunities Threats 

about 7–10 days between 

acquisitions. This would 

be adequate to monitor 
the various phases of the 

sugarcane crop 

development throughout 
the growing season 

 This can support new 

business models – for 

example, users could 
pay a fixed subscription 

fee for access to a 

service that provides a 
steady flow of data over 

defined areas of 

interest.  
 These services will 

potentially remove the 

need to order data up 

front, and in turn may 
remove a barrier to 

entry for new users 

 Irrigation advisory 
service at this scale 

helps to real time, more 

precise decisions on 

sugarcane irrigations 
and water use 

efficiency.  

for Pléiades 

50cm data). 

 Source 
switching 

between the 

ranges of high 
resolution 

supply options 

can lead to 
significant data 

handling and 

processing 

chain changes 
for users, which 

can add extra 

cost. 
 

 

Radar 
(Sentinel 1, 

Radarsat,  

ALOS-2,  

SAOCOM) 

 Can be acquired as 
frequently as possible 

without cloud and other 

atmospheric interference 

and solar angle 
variations.  

 Depending on the 

wavelength, the radar 
backscatter signal carries 

information about the 

moisture status of 
vegetated landscapes 

 Sentinel 1 is free and has 

good repeat cover 

 Few studies showed high 
correlations between the 

radar backscattering 

coefficients and NDVI 
derived from SPOT-4/5 

images as a function of 

sugarcane crop 

parameters.  
 The decrease in NDVI for 

fully mature sugarcane 

fields due to drying of the 
sugarcane (water stress) 

was also observed in the 

radar signal. 

 Difficult to interpret 
in regard to 

sugarcane due to its 

sensitivity to soil 

moisture. 
 Wet field can look 

the same as a field 

with high biomass. 
 Limited studies on 

soil moisture 

estimation with 
Sentinel 1. There are 

other radar sensors 

used for this, but the 

resolution is 
generally fairly 

coarse i.e. SMAP. 

 More research work 
is needed to identify 

and evaluate the 

links between 

backscatter and crop 
coefficients. 

 Combination of radar 
data together with 

optical data has not yet 

been exploited to its 

fullest extent.  
 Radar is useful because 

of its sensitivity to soil 

moisture status, even in 
complex environments.  

 Furthermore, radar data 

can be collected in 
almost all weather 

conditions, a 

characteristic that is 

especially important in 
areas with frequent 

cloud cover. 

 Relatively low 
Australian civil 

national 

heritage and 

capacity to 
handle and 

process SAR 

data, in 
particular in 

application 

areas where 
SAR is 

employed on a 

routine basis 

 Development of 
the Copernicus 

ground segment 

and data policy 
implementation 

remains may 

impacts on the 

supply of 
Sentinel-1 data, 

though it is 

currently 
available via a 

rolling Science 

Archive. 
 Loss of L-band 

continuity is a 
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Remote 

Sensing data 

Strengths Weaknesses Opportunities Threats 

considerable 

risk with 

ALOS-2 data. 

UAV/ Drone  Ability to collect very 

high spatial resolution 

data, from centimetres to 
even sub-centimetre, and 

very high positional 

accuracy (X,Y,Z). 

 UAV system can operate 
under cloud, and so long 

as images are corrected 

appropriately for varying 
target illumination 

associated with cloud 

cover, they offer 

unprecedented scheduling 
flexibility 

 The UAV systems can 

carry a large variety of 
sensors ranging from a 

low cost commercial 

RGB cameras to more 
expensive multispectral, 

near infrared, thermal and 

hyperspectral cameras 

and LiDAR sensors 
 The major advantages of 

using UAV systems in 

the context of tactical 
crop scouting, including, 

potentially for irrigation 

management is cost-
effectiveness, especially 

for small scale operation. 

 In agriculture, numerous 

studies have utilised  
UAV data to compute 

different plant parameters 

(LAI, fc) and crop 
parameters (vigour, 

quality, yield) measured 

during the entire growing 

season, as well as 
providing information on 

crop health and nutrient 

status 

 Large scale 

monitoring requires 

considerable post-
processing capability 

to create mosaic 

imagery, and this is 

exacerbated by the 
difficulties in feature 

matching on 

overlapped images 
in homogenous area, 

for example within a 

uniform crop. 

 It has a serious 
battery backup issue 

and frequent battery 

recharging/replacem
-ent is required in 

between the survey 

 To use UAVs, unless 
the instrument is 

owned and operated 

by the grower, the 

costs would be 
prohibitive on such a 

short return 

monitoring interval 
as 7 days. 

 

 

 The significant and 

fast-paced 

technological 
advancements in 

small-sized UAVs 

equipped with GPS 

and high quality 
remote sensing 

devices offer 

numerous 
opportunities for 

irrigation-related 

management. 

 Under optimal 
conditions, the UAV 

data can serve as a 

potentially valuable 
source of very high 

resolution data in real 

time and on demand; a 
particularly useful 

capability for filling 

data gaps in any time-

critical tool for 
irrigation 

management.  

 

 UAV/Drones 

can be shut 

down mid-
flight, injuring 

bystanders and 

causing 

property 
damage 

 UAV use in 

Australia is 
regulated by the 

Civil Aviation 

and Safety 

Authority 
(CASA). They 

understand that 

for agriculture 
usage, UAVs 

are flown low to 

the ground and 
hence could be 

catastrophic. 

Therefore 

CASA 
recognises the 

requirement that 

all operators 
should be 

appropriately 

trained and 
licenced. 

 The risks 

increase 

significantly 
with the size of 

the UAV 

(>3.5kg) and 
containing 

batteries that 

may cause fire, 

that can cause 
damage to 

property or 

persons on the 
ground when 

used 

incorrectly.  
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2.8 Conclusion 

While our sugar industry has long recognised the need for agile and timely irrigation 

scheduling tools, the last 10 years has seen significant developments in the field of remote 

sensing that offer a new window of opportunity for developing and operationalising remote 

sensing based irrigation management tools. We have seen  the launch of new optical as well 

as radar satellite systems with improved spatial and temporal resolution characteristics, some 

of which offer free access to data, improvements in the delivery of  satellite imagery to 

clients, the evolution of cloud based computing supported by innovative image processing 

algorithms (for example object as well as pixel based processing), and of course the 

enormous improvements in our capabilities to receive data at home, in the office and in the 

field through the various forms of internet access available, both fixed and mobile.  There is a 

volume of research on irrigation scheduling for different crops (e.g maize, corn, cotton, etc) 

reliant upon remotely sensed data, and in particular utilising the VI-Kc/Kcb approach. While is 

less work reported on RS based irrigation management and scheduling for sugarcane crops, 

the basic approaches insofar as developing methodology and algorithms are now well 

founded and can be readily applied. Moreover there is already experience in the market place 

in the delivery of irrigation scheduling tools for other crops, and so it may be as simple as 

extending existing systems to include sugar pending the development of appropriate 

algorithms.  
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Appendix A 

A1.1 Sugarcane  

Sugarcane (Saccarum officinarum) is a long duration, tall-growing perennial plant crop that 

require an abundant supply of water, either in the form of rainfall or irrigation, to achieve 

maximum productivity. It is cultivated in the tropical and subtropical regions of the world 

(between latitudes 35°N and 35o S) mainly for sugar production from sucrose stored in the 

internodes of the stem (Grof and Campbell, 2001), and also for by-products such as bagasse, 

molasses, fibre cake and cane wax (OGTR, 2004). Countries like Brazil and Reunion also use 

the crop for fuel ethanol (alcohol) production (Xavier et al. 2006). The favourable climatic 

condition for sugarcane growth is a long, warm growing season with a high incidence of 

sunlight (mean daily temperature between 22 and 30°C) and an adequate water supply 

(moisture), followed by a dry, sunny and cool ripening and harvesting period (mean daily 

temperature between 20 to 10°C). The most important of these factors is the water 

availability (Inman-Bamber and Smith, 2005), which is directly related to the amount of cane 

grown under suitable conditions of temperature and sunlight (Singels et al., 2005). For 

instance, with each 10 mm of soil water use by the crop, one tonne per hectare of cane is 

produced. A long growing season is essential for high yields and the normal length varies 

between 15 to 16 months. Sugarcane does not require a special type of soil and can grow in 

well aerated soil of 1-5 m depth with the groundwater table 1.5 to 2.0 m below the surface. 

Sugarcane has high nitrogen and potassium needs and relatively low phosphate requirements, 

or 100 to 200 kg/ha N, 20 to 90 kg/ha P and 125 to 160 kg/ha K for a yield of 100 ton/ha 

cane, but application rates are sometimes higher. At maturity, the nitrogen content of the soil 

must be as low as possible for a good sugar recovery, particularly where the ripening period 

is moist and warm.  

A1.2 Sugarcane and water 

Most of the sugarcane growing regions in the world have sub-optimal rainfall for cane 

production and require some form of irrigation to support sugarcane cultivation  (Inman-

Bamber 2004; Inman-Bamber and Smith 2005; Jarmain et al. 2014). For example, 60 % of 

Australia and 40 % of South Africa sugarcane production is dependent on some form of 

irrigation, while countries like Swaziland and Sudan are completely dependent on irrigation 

(Inman-Bamber and Smith, 2005). In addition to reducing dependence on rainfall, irrigation 
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enables better planning and flexibility in different farming activities including timing for crop 

planting. Furthermore it increases the reliability of ratooning and enables more succeeding 

growth of cane.  

For maximum yields it is important to maintain sufficient moisture in the soil throughout the 

crop growing period as both plant and cane growth is directly related to the water transpired. 

The crop water requirement refers to the amount of water that needs to be supplied to 

facilitate crop growth, while crop evapotranspiration refers to the combined amount of water 

that is lost from the growing ‘system’ through evaporation and transpiration (for example, 

Inman-Bamber and Smith 2005; Gibson et al. 2013; Zhang et al. 2015). The values for the 

crop evapotranspiration and the crop water requirement are essentially the same. The crop 

evapotranspiration under standard conditions (ETo) (or ‘reference ET’) is defined as the 

evapotranspiration from disease free, well-fertilized crop, grown in large fields, under 

optimum soil water conditions, and achieving full production under the given climatic 

condition ‘FAO56’ (Allen et al. 1998). Effectively the crop water requirement is therefore the 

amount of water required to compensate the evapotranspiration loss from the cropped field. 

The quantity of irrigation water required represents the difference between the crop water 

requirement and effective precipitation, the latter referring to the rainfall-derived water 

available for uptake by the sugar plant. The irrigation water requirement, therefore includes 

additional water for leaching of salts and to compensate for non-uniformity of plant water 

demand. In the sugarcane sector, the water use efficiency (WUE) (or water productivity) is 

used as a measure of overall effectiveness of water use (either rainfall, or irrigation, or both) 

for cane production (via plant evapotranspiration) (Zwart and Bastiaanssen, 2004). The 

irrigation water use efficiency (IWUE) can be defined as the cane yield in response to unit of 

irrigation water applied (Inman‐Bamber et al. 1999).  

The reference evapotranspiration (ETo) can be calculated from meteorological data using the 

standard FAO Penman-Monteith method (Allen et al. 1998). The FAO Penman-Monteith 

method requires data on solar radiation (photosyntethically-active radiation- PAR), air 

temperature, air humidity and wind speed. Allen et al. (1998) recommends the use of a 

standard hypothetical crop, namely grass having a plant height of 0.12 m, a surface resistance 

of 70 sm-1 and an albedo of 0.23 for ETo calculation. The crop evapotranspiration (ETc) is 

determined by multiplying ETo by a crop coefficient (Kc) according to : 

ETc = Kc x ETo        (A1) 



34 

The crop coefficient (Kc) integrates the departures of actualy field crops at different stages of 

growth from the ETo reference surface. In what is referred to as the “dual” crop coefficient 

approach the value of Kc can be separated into two coefficients: a basal crop coefficient (Kcb) 

and a soil evaporation coefficient (Ke) (Allen et al. 1998; Allen and Pereira 2009) according 

to: 

Kc = Kcb + Ke          (A2) 

Therefore, 

ETc = (Kcb + Ke) * ETo       (A3) 

 

The basal crop coefficient (Kcb) represents the plant-only transpiration component of ETc.  

The soil evaporation coefficient (Ke) represents the evaporation from just the soil, after 

wetting by precipitation or irrigation. When the soil surface is dry but plant transpiration 

occurs without water limitation then Ke = 0 and from Eq. A3 Kcb can be calculated by the 

ratio of the crop evapotranspiration (ETc) to the reference evapotranspiration (ETo). 

On selection of the calculation approach (single or dual crop coefficients), the lengths of the 

crop growth stages and the corresponding crop coefficients are used to construct a crop 

coefficient curve. The curve represents the changes in the Kc over the length of the growing 

season and the shape of the curve represents the changes in the vegetation and ground cover 

during plant development and maturation (Allen et al. 1998). From suchs curve, the Kc and 

ETc can be derived for any period within the growing season. Examples of generalised, 

seasonal crop coefficient curves based on both single crop and dual crop coefficients are 

given in Figure A1. 

 

 

(a) (b) 

Figure A1 Generalised seasonal crop coefficient curves based on single crop and dual crop 

coefficients (source: Allen et al., 1998). 

At the time of planting, and during the initial plant development stages, the value for Kc is 

typically small, and this increases rapidly with the plant development and reaches a 
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maximum value, Kc-mid. During the late season period, Kc decreases to a value at the end of 

the growing period equal to Kc-end. The values for Kc-ini and Kc-end can vary considerably on a 

daily basis, as transpiration is dependent on plant available water. Bearing in mind that fact 

that Kc includes the effects of evaporation from the soil. the values of the basal crop 

coefficient, Kcb, lies below the Kc values (Figure A1b). The difference between Kc and Kcb is 

more pronounced during the initial growth stages where significant evaporation from the 

exposed soil occurs. At the mid-stage of plant development, the crop canopy obscures more, 

if not all, of the soil and soil evaporation is minimal. The value of  Kcb then approaches the 

value of Kc. Depending on the frequency with which the crop is irrigated during the late 

season stage, Kcb will either be similar to Kc if irrigation adequately meets the plant water 

demand, or will less than the Kc value if the plant water demand is not met. In Figure 1b, the 

‘spikes’ in Ke are associated irrigation or rainfall events, where strong evaporation occurs 

from the wetted soil surface. Note that such spikes reduce in amplitude with ongoing crop 

development as less of the soil surface is exposed. At the same time, if water is limiting, then 

Kcb may also exhibit spikes due to the increase in plant evapotranspiration associated with 

increased plant function. Both, of course, contribute to spikes in Kc.  

Allen et al. (1998) describe criteria for the use of single and dual crop coefficient approaches. 

As the single Kc coefficient integrates both soil evaporation and plant transpiration, ETc is 

often computed for weekly or longer time periods, although calculations may proceed on a 

daily time step. The time-averaged single coefficient Kc is used for scoping studies and 

irrigation system design where the averaged effects of soil wetting are acceptable and 

relevant. This is often the case for surface irrigation and set sprinkler systems where the time 

interval between successive irrigation is of several days, often ten days or more. In other 

words, for typical irrigation management, the time-averaged, single Kc is valid.  

The dual coefficient approach requires more detailed site information and can support more 

complex numerical calculations. For example, the dual coefficient procedure is appropriate 

for real time irrigation scheduling, especially for soil water balance computations where 

knowledge of variations in soil surface wetness and the resulting impacts on daily ETc, the 

soil water profile, and deep percolation fluxes are important. This is potentially important 

information in the case for high frequency irrigation with micro-irrigation systems or lateral 

move systems such as centre pivots and linear move systems. 

In any discussion of ETc, what is important is water available to the plant rather than water in 

(or on) the soil. For example, low soil water availability reduces plant transpiration (T) while 
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mulches decrease soil evaporation (E) (Allen et al. 1998). In such conditions, ETc is adjusted 

(ETc-adj) either, by introducing a ‘water stress coefficient’ (Ks) as a penalty to the non-stress 

related value of Kc in the single coefficient approach: 

ETc-adj = Ks * Kc * ETo;        (A4) 

or by introducing a penalty term to the basal crop coefficient  component in the dual 

coefficient approach: 

ETc-adj = (Ks*Kcb + Ke)* ETo        (A5) 

Allen et al. (1998) provides guidelines for adjustment of soil evaporation and crop 

coefficients under various climatic, environmental and crop management conditions. The 

value of Ks describes the effect of water stress on crop transpiration. Since Ks has more 

impact on crop transpiration, rather than evaporation from soil, the application of Ks in the 

dual crop coefficient equation considered more appropriate.  

A1.3 Sugarcane irrigation scheduling 

The aim of an irrigation scheduling tool is to provide information about the correct time and 

quantity of water application necessary to optimize crop yield, maximize water use efficiency 

and ensure minimum damage to the soil and crop (Mulla, 2013). In other words, irrigation 

scheduling is a process that helps in making decision on when and how much water needs to 

be applied to a cropped field to maintain the soil moisture to the desired level. The decision 

on when, where and how much to irrigate can be a complex task for growers/managers. 

Monitoring the crop, weather and soil are essential requirements of any irrigation scheduling 

process (Gibsen et al. 2013). Three basic approaches are used, either on their own or in 

combination:  

 Calculating crop water requirements, for example evapotranspiration (ETc) based 

observations of third-party parameters (for example ETo via data extracted from nearby 

weather stations), not necessarily directly connected with the crop itself; 

 Directly monitoring soil moisture levels in the crop root zone; and/or 

 Directly monitoring the crop plants themselves 

For sugarcane, the frequency of application and volume of water required varies with the 

climatic conditions, environmental conditions (soil moisture) and cane growth phase (for 

example, Robertson et al. 1999; Inman-Bamber 2004; Inman-Bamber and Smith 2005; Zhang 

et al. 2015). A consideration of the physiological characteristics of the sugar cane at different 

growing stages is important. Figure A2 shows the relationships between relative yield 
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decrease (1-Ya/Ym) and relative evapotranspiration deficit (1-ETa/ETm) for the individual 

growth periods (IWM, 2017; Robertson et al. 1999; Inman-Bamber and Smith, 2005). Here 

ETa is the actual evapotranspiration, ETm is the maximum evapotranspiration, Ya the actual 

yield (kg/ha), Ym the maximum yield (kg/ha), and Ky is the yield response factor (crop 

specific and vary over the growing season according to growth stages). During the initial 

germination, emergence and establishment of young seedlings the crop requires less water 

and hence light and frequent irrigation applications are preferred to just keep the soil moist 

with adequate aeration. Infrequent and less water application at this stage can lead to lower 

and delayed germination, while over irrigation can cause bud rotting (due to lack of aeration), 

fungal attack and lower soil temperature. Thus both under- and over-irrigation are 

unfavourable conditions for germination which can result in low stalk population per unit 

area (Robertson et al. 1999; Jarmain et al. 2014).  

 

 

Figure A2 Relationships between relative yield decrease (1-Ya/Ym) and relative 

evapotranspiration deficit (1-ETa/ETm) for the individual growth periods (FAO 1998).  

(Source: IWM 2017). 

During the early vegetative period the tillering is direct proportion to the frequency of 

irrigation application. However, excess use of water is not suitable as it hinders active root 

development process by blocking nutrient uptake due to poor oxygen diffusion. The stem 

elongation and early yield formation is the most critical period for moisture supply in 

sugarcane because the actual stalk growth and production of sugar storage tissues takes place 

in this period. The crop reaches its peak water requirement in this stage and the stalk 

elongation is directly related to the water use. Adequate water supply during this period 
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ensures active growth and the formation of long internodes. Therefore the irrigation interval 

can be extended but the depth of water should be increased to maintain a moisture content of 

84-85% in the leaf sheaths, the production of longest internodes with more girth (thick cane) 

and the greater total cane weight. 

In India, the tillering/early yield formation period coincides with the hot weather period 

(March-June) when high evapotranspiration results in more crop water needs. In such 

conditions, the management of irrigation water supplies to meet the large water requirement 

is crucial to obtaining optimum sugarcane yields. In the ripening period, a restricted water 

supply or mild water deficit (sheath moisture content of 74-75%) is necessary to bring the 

crop to maturity by reducing the rate of vegetative growth, dehydrating the cane and forcing 

the conversion of total sugars to recoverable sucrose. With the checking of vegetative growth, 

the ratio between dry matter stored as sucrose and that used for new growth also increases.  

Based on the FAO Irrigation and Drainage Paper No. 24 (FAO 1992), the indicative duration 

of each of the four distinct growth stages of sugarcane and the total growing period for 

various types of climate and location is given in Table A1. Depending on the climatic 

conditions, cultivation method and length of the cropping cycle, the water requirements (ETc) 

for sugarcane ranges from 1500 to 2500 mm, more or less evenly distributed throughout the 

growing season. The transpiration coefficient of sugarcane is around 400. This means 400 m3 

of water is required to produce one ton of dry matter. The amounts of water required to 

produce 1kg of cane, dry matter and sugar are 50-60, 135-150 and 1000-2000g, respectively. 

Table 1 shows the single (time-averaged) crop coefficients, Kc, and basal crop coefficients, 

Kcb for non-stressed, well-managed crops in sub-humid climates (FAO 1998; Allen et al. 

1998). Table A2 summarises the sugarcane crop coefficient (Kc) values, relating ETc to 

reference evapotranspiration (ETo) for the different growth stages. 

 

Table A1 Single crop coefficients, Kc, and basal crop coefficients, Kcb for non-stressed, well-

managed crops in subhumid climates (FAO-56; Source: Allen et al. 1998) 

 

Crop 

Coefficients 

Initial/ Beginning of 

growing season 

Mid of growing 

season 

End of growing season 

Kc 0.40 1.25 0.75 

Kcb 0.15 1.2 0.7 
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Table A2 Summary of sugarcane crop coefficient (Kc) values, reference evapotranspiration 

(ETo) for the different growth stages. 

 

Development stages Days Kc  

Planting to 25% of full canopy  30‐60 0.45‐0.6 

25% to 50% of full canopy 30‐60 0.45‐0.6 

50% to 75% of full canopy 15‐25 0.90‐1.00 

90%‐100% of full canopy 45‐55 1.00‐1.20 

peak use 180‐330 1.05‐1.30 

early senescence 30‐150 0.80‐1.05 

Ripening 30‐60 0.60‐0.75 

Kc values depend on minimum relative humidity and wind velocity 

(FAO Irrigation and Drainage Paper No. 24) (FAO 1992) 

 

The single Kc value of sugarcane ranges from 0.4–1.25 for the initial (low canopy) and mid 

(full canopy) periods of crop development, to 0.75 for the end (harvest) of development 

(Allen et al. 1998). Inman-Bamber and McGlinchey (2003) confirmed the values for the 

initial and mid periods of development, but they reported a higher Kc of 1.25 for the final 

stage, when water was not limiting. They found measured ETc to rarely exceed 8 mm/day in 

Australia and 7 mm/day in Swaziland. Allen et al. (1998) stated that ‘Class A’ pan 

evaporation can also be used as another reference for ETc in many crops, including 

sugarcane. Inman-Bamber and Smith (2005) reviewed the findings for the ETc and pan factor 

and found 7.8 mm/day (pan factor 0.66-0.95) in Australia (and the pan factor for drip 

irrigated sugarcane in Hawaii to be 0.88). Win et al. (2014) determined water requirement 

and Kc of sugarcane at different crop growth stages in Myanmar using a lysimeter.  

A1.4 Soil water balance and water deficit (stress) 

Soil water balance is used to control the quantity and availability of soil moisture to a crop by 

modelling the quantitative water dynamics within the soil. In soil water balance, the inputs of 

water to the soil are in the form of irrigation, rainfall, subsurface inflow and capillary rise, 

while outputs that remove water from the soil include evaporation, transpiration, runoff and, 

percolation. In its simplest form, the RS-based water balance model aims to track the water 

deficit in the soil root zone over time by quantifying the evapotranspiration (ETc) (removal of 
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water from the soil root zone) and amount of water supply through irrigation and rainfall 

(adding water to the soil root zone) as: 

 

Rain + Irrigation – Crop Water Use (ETc) = 0 (Soil Water balance)  

or 

Change in soil water Storage = Rain + Irrigation – Crop Water Use (ETc) 

The soil moisture deficit can be calculated on a daily basis to indicate when the amount of 

water in the root zone is insufficient, and hence timing for irrigation application (Wigginton 

et al. 2012).  

Deficit (today) = Deficit (yesterday) – irrigation – rainfall +ETc  

Where: Deficit = soil moisture deficit (amount of available water in the root zone below field 

capacity); ETc = Crop evapotranspiration (crop water use) 

Excess of water supply can cause inefficient plant growth, while too little results in restricted 

plant growth. This is very important in water-limited regions of Australia, where the main 

issue is to determine the trigger point for irrigation; with scarcity of water supply, 

determination of exact timing and amount of irrigation is vital so as not to irrigate too early 

(and in excess) or too late (and too little). Seasonal Kc datasets derived from time-series RS 

data give a guide for when sugarcane crops are active for a season, to be supported by ground 

inspections. This really depends on crop, irrigation system and management 

preference. Thus, irrigation-related decisions are made based on ground-based information 

with support from RS data inputs. Both the crop water stress and scheduling irrigations can 

use RS technology but it is so important to ground truth models thoroughly with reality.  

For irrigation scheduling management, knowledge of the basic soil states (saturation, field 

capacity, permanent wilting point, and readily available water) within the soil root zone are 

required (Wigginton et al. 2012). Saturation in soils occurs after heavy rain, or over-

irrigation, when larger soil pores are filled with water resulting in no air for the plant roots 

and stress in plants. Field capacity (full point) occurs after large soil pores (macropores) have 

drained due to gravity but the soil is still wet, but not saturated. The soil water deficit is 0 mm 

at field capacity. Permanent Wilting Point (PWP) of soil is the point at which the plant cannot 

extract moisture from soil due to very low water content and the plant starts dying. The water 

between field capacity and PWP is available to the plant, and to improve water-use 
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efficiency, irrigators aim to maintain the soil water in the range that can be readily used the 

plant. This range is called the Readily Available Water (RAW) (mm/m) and indicates the 

depth of water (mm) held in every metre (m) of soil that can be readily removed by the plant 

(Hornbuckle et al. 2016). To achieve high production and to avoid waterlogging or excess 

drainage, the RAW for each crop and field/block (soil type, texture etc.) should be known.  

A1.5 Time of irrigation (Refill point) 

Once RAW has been used, the plant roots struggle to extract water from the soil and growth 

is affected. At this point refilling of water (refill point) is done in the form of irrigation. More 

water is required for drier soil to bring it to its field capacity (Hornbuckle et al. 2016) (Figure 

A2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

While determining the refill point, three factors namely soil type (water holding capacity of 

clay vs sandy soil), crop rooting depth and type of irrigation system (sprinkler, drip, surface), 

should be taken into account. Factors like crop root depth may change over time, hence the 

refill point may also change throughout the season. Similarly, knowing the irrigation system 

limitations can help in setting the refill point and guide on irrigation decisions. The refill 

point values do not affect the water balance deficit but simply indicate that the soil moisture 

profile has reached a value that is going to be stressful for the crop and irrigation is needed to 

maintain a comfortable root zone environment for plant growth (Hornbuckle et al. 2016). 

 

 

 

Figure A2 Soil water fuel gauge (Wigginton et al. 2012; Hornbuckle et al. 

2016). 
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A2. Remote sensing based irrigation scheduling 

For effective implementation of different irrigation scheduling strategies, measurements of 

plant, environmental and climate parameters are required. The irrigation water requirements 

(IWR); water that must be supplied by irrigation to satisfy evapotranspiration, leaching, and 

other plant water needs for optimal plant growth and yield other than precipitation (Jensen et 

al. 1990), is computed based on crop water requirements (CWR) and soil water balance 

(CWB). Crop evapotranspiration (ETc) is a primary component. Several methods and 

guidelines have been developed to estimate ETc, CWR and IWR for different crops grown 

under different geographic and climatic conditions, for example FAO24 (Doorenbos et al. 

1977) and FAO56 (Allen et al. 1998). Numerous field based methods and models have been 

developed to provide information on crop water use (or water losses through ET), crop 

irrigation requirements, biomass and yield production and water use efficiency for sugarcane 

growers (for example, Savage et al. 2004; Annandale et al. 2005; Ehlers et al. 2007; Van 

Heerden et al. 2008; Jarmain et al. 2009). All of these standard methods are ‘spatially 

integrative’, insofar that unless specifically configured for the purpose, that is configured 

whereby certain input parameters are spatially registered, they won’t factor in spatial patterns 

or variations in crop water use across an agricultural field. Put simple, input parameters are 

simply average values expected to apply to a given spatial scale, or region, of interest.  

The application of remote sensing (RS) based irrigation management involve accurate 

assessment of spatial and temporal patterns of ETc, or a surrogate indicator of ETc to help in 

designing irrigation schedules and to match water placement with actual crop water needs at 

the appropriate spatial scale. Recent advances in RS technology, namely through platforms 

that offer appropriate spatial and temporal characteristics  offer the opportunity to spatially 

estimate the ETc, crop water use, biomass and yield production, and water use efficiency 

(WUE) (Barnes et al. 2003; Pinter et al. 2003). Moreover, recent open data initiatives such as 

the USGC data policy of providing open and free access to georeferenced Landsat images in 

near real-time have greatly increased activity in the market place (and R&D community) in 

developing RS-based tools for on farm management decisions including irrigation 

(https://earthexplorer.usgs.gov/). A similar open data policy of the European Space Agency 

allows free and open access to the 10m Sentinel-2 data. Furthermore, an increasing number of 

commercial sensors providing very high spatial resolution, for example 1–6 m (for example, 

SPOT6/7, RapidEye, Digital Globe, WorldView2, PLEIADES) provide frequent land 
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observations with increasing revisit capabilities (https://scihub.copernicus.eu/dhus/). Non-

sugar examples include Zwart et al. (2010), who used RS data for WUE assessment for all 

mono‐culture wheat areas in the world, which was subsequently extended to rice and corn, 

and also for grapes in the Western Cape (Klaasse et al. 2011; Jarmain et al. 2010). 

An accurate determination of seasonal crop evapotranspiration (ETc) is essential for irrigation 

scheduling and the data derived from remote sensing has been found to be useful in 

calculation of spatially distributed actual ET (ETa) (for example, Chen et al. 2014). 

Numerous RS-based ETc computation algorithms have been developed (detailed review can 

be found in Verstraeten et al. 2008). Depending on the variables measured from the RS data 

(Kc, Kcb, Ke, Ks), three RS-based ETc estimation approaches have been used: (a) 

parameterisation of the surface energy balance using RS based reflectance and surface 

temperatures, along with ground-based meteorological data; (b) estimation of the basal crop 

coefficient (Kcb) from the spectral characteristics of crop leaves using single or multiple 

wavelength, including spectral reflectance index, relationships; and (iii) a direct application 

of RS-based parameters into the Penman-Monteith (PM) formulation. Such RS based ETc 

computation methods are found well suited for estimating crop water use or ETc (Allen et al. 

1998) and also in determining the spatial pattern of ETc over time. Figure A3 shows a 

schematic framework of the integration of RS based models for the assessment of CWR and 

IWR. These will be discussed in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3 Schematic framework of the integration of RS based different models for the 

assessment of CWR and IWR 
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A2.1 Remote sensing based Surface Energy Balance (RS-SEB) 

A number of surface energy balance models have been developed to estimate actual ET (ETa) 

using an energy balance equation, surface temperature and water use efficiency relationship. 

These include the Surface Energy Balance Algorithm for Land (SEBAL) model (Bastiaanssen 

et al. 1998), Mapping EvapoTranspiration with high Resolution and Internalised Calibration 

(METRIC) model (Allen et al. 2007), Surface Energy Balance System (SEBS) model (Su, 

2002), Vegetation Index / Temperature Trapezoid (VITT) model (Moran et al. 1994), Two 

Source Energy Balance (TSEB) model (Norman et al. 1995), the Atmosphere‐Land Exchange 

Inverse (ALEXI) model (Anderson et al. 2007). While there are actually more, this review will 

focus on these owing to their potentnial (or actual) relevance to remote sensing based 

approaches.  

A2.1.1 SEBAL 

The SEBAL model uses RS images recorded in visible, infrared and thermal bands 

instantaneously from satellites such as Landsat, ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer), MODIS (Moderate Resolution Imaging 

Spectroradiometer), NOAA AVHRR (Advanced Very High Resolution Radiometer) to 

estimate pixel-based actual ET (ETa)-amount of water used crops; crop potential ET (ETp)- 

the amount of water that could be evaporated and transpired if sufficient water was available; 

ET deficit (ETd) or water deficit- the difference between the ETp and ETa as an indicator of 

plant water stress; biomass growth- ground dry matter production; biomass water use 

efficiency (WUE)- total biomass produced (kg/ha) per unit of water used; and soil moisture.  

The basis of SEBAL is computation of residual energy from the classical energy balance 

equation: 

λET = Rn–G–H         (A6) 

where λET is energy used for evapotranspiration (latent heat flux), Rn is net radiation at the 

surface, G is soil heat flux and H is flux reflected back to air (space) (also known as sensible 

heat flux)  (all fluxes measured in W/m2/day). The ET (mm/day) is calculated from the λET 

by dividing it by the latent heat of water vaporization (λ) (J/kg). Land surface characteristics 

such as surface albedo, leaf area index (LAI), the vegetation index (VI) and surface 

temperature (TR) are derived from satellite imagery. In addition to satellite images, the 

SEBAL model requires some meteorological data, such as wind speed, humidity, solar 

radiation and air temperature. The SEBAL model uses the energy balance, and not the water 
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balance, therefore no data on land cover, soil type or hydrological conditions are required. 

Since the ET and biomass production are key indicators for water management and irrigation 

performance, SEBAL map these key indicators in time and space for days, weeks or years 

and applied and validated in different parts of the world (for example Teixeira et al. 2009). 

The SEBAL is based on assumptions of a linear relationship between near-surface vertical 

temperature gradient (To) and land surface temperature (TR). The relationship is obtained by 

selection of two extreme hydrological pixels- extreme wet/cold and extreme dry/hot pixels. 

Although SEBAL has been applied in more than 30 countries worldwide with considerable 

accuracy (Bastiaansssen, 2000; Bastiaansssen et al. 2005), there are still some deficiencies, 

including the requirement of selection of extreme “cold” and “hot” pixels throughout the 

image scene, which is subjective and user dependent. 

A2.1.2 METRIC 

To overcome the difficulty of manual selection of cold and hot pixels with SEBAL, Allen et 

al. (2007) proposed METRIC model; a satellite-based image processing procedure for 

calculating actual ET efficiently and accurately from irrigated lands throughout growing 

seasons. The METRIC model differs  from the SEBAL model in its use of weather-based 

reference ET to establish energy balance conditions at a “cold” pixel. An alfalfa crop-based 

reference ET (ETR) value of 1.05, estimated by a standardized ASCE Penman-Monteith 

equation, is considered to be ETa of the “cold” pixel. In addition, METRIC considers the 

effects of complicated topography. However, METRIC still needs to include a 

“representative cold pixel” from the satellite scene, which has biophysical characteristics 

similar to the reference crop (alfalfa). According to Allen et al. (2007), the actual ETa, 

calculated by METRIC has very high correlation with ET as measured by on-ground 

lysimeters.  

A2.1.3 SEBS 

The SEBS model is an energy balance approach (Su 2002) that estimates daily actual ET 

from RS and meteorological data by calculating the energy required for water to change 

phase from liquid to gas. The SEBS model estimates the evaporative fraction based on energy 

balance of dry/wet limiting cases. At the wet-limit, ET takes place at its potential rate, while 

at the dry-limit point the sensible heat flux reaches its maximum value (Rn − G) for each 

pixel. SEBS does not require the existence and the selection of extreme pixels, but it needs 

many required parameters and a relatively complex solution of the turbulent heat fluxes 
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which may introduce considerable uncertainty when a priori knowledge about the target crop 

area is insufficient. The SEBS model has been widely used in a range of agriculture 

environments for the computation of actual ET (for example Su, 2002; Jia et al. 2003; Su et 

al. 2005; Timmermans et al. 2005; Hailegiorgis, 2006; Lin, 2006; McCabe et al. 2008). 

However, the accuracy of the SEBS model results is difficult to assess as no standard method 

has been followed for presenting the results and validation methods, and also the associated 

accuracies were found to be dependent on the given study area, with little information 

provided to ascertain transferability. In most cases, the SEBS model results have been 

validated with a variety of field and/or complementary methodologies such as lysimeters (for 

example, Lin 2006), Bowen ratio (Su 2002; Timmermans et al. 2005; McCabe et al. 2008; 

Badola 2009), scintillometers (Jia et al. 2003), hydro-meteorological equations (Hailegiorgis 

2006; Gebreyesus 2009) and the water balance equations (Su and Roerink 2004; Pan et al. 

2008). 

A2.1.4 VITT 

The VITT model developed by Moran et al. (1994) is based on the hypothesis that the plot 

between measured surface minus air temperatures (Ts − Ta), and fractional vegetation cover 

(Vc) which has values ranging between 0 to 1 (where 0 and 1 represent bare soil and full 

vegetation cover, respectively), would have a trapezoidal shape. The vertices of the (Ts − Ta) 

vs Vc trapezoid are defined as well-watered vegetation, water-stressed vegetation, saturated 

bare soil, and dry bare soil.  By using the physical energy balance equation (measured Ta, Rn 

and G), the values of the four vertices of the trapezoid can be computed for a specific time, 

day and crop. However, large deviations of Rn (up to 20%) and G values between bare soil 

and vegetation may distort the trapezoidal space significantly. In addition, Ts − Ta 

measurements for the four extreme vertices of the trapezoid are not necessarily available 

directly. To overcome this, Wang et al. (2011) suggested a pixel-based Ts vs vegetation index 

(VI) trapezoidal model using an iterative procedure to consider the interaction process 

between Ts with Rn and the difference of G at different vertices.  

A2.1.5 TSEB 

The TSEB model, described by Norman et al. (1995), estimates evaporation (E), transpiration 

(T), and ET of vegetated surfaces based on soil (Ts) and canopy (Tc) surface temperatures.  

Most annual crops including sugarcane contain partial canopy cover starting from the early 

part of the growing season, therefore the composite surface temperature (TR) contains both 
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canopy (Tc) and soil (Ts), particularly for deficit-irrigated crops in dryland with limited water 

supply. Usually only composite surface temperature (TR) measurements are available at a 

single view angle, the Ts and TC are derived from single TR using simple linear mixing. The 

meteorological variables normally used to calculate ET (air temperature, vapour pressure 

deficit, wind speed, and solar irradiance), and ancillary information about the vegetation are 

estimated for common crops (LAI, crop height, row spacing, etc.). Quantification and 

management of ET and its components, E and T) are found useful to increase crop water use 

efficiency (WUE) and also in water resources management for irrigated crops. Though few 

studies have estimated Tc and Ts from multiple view angles of TR (Pinter et al. 2003) the 

estimations were found sensitive to errors in TR measurements (for example, Chehbouni et al. 

2001 and Merlin and Chehbouni 2004). 

A2.1.6 ALEXI 

The ALEXI model, proposed by Anderson et al. (2007) as an improvement of a two-source 

scheme, is a multi-sensor thermal approach to map ET by reducing the need for ancillary data 

input over a large area. The model deals with the errors in TR remote estimation by using the 

rate of change in TR observations (Anderson et al. 2010). The model estimates surface 

changes of heat and water vapour at scales of 5-10 km primarily from weather satellites, 

surface temperature derived from GOES (Geostationary Satellite Server) data, and vegetation 

indices from AVHRR satellite data on a daily basis. The model output used for regional 

hydrologic analyses, water stress assessment, agricultural decision-making and yield 

forecasting. 

A2.1.7 CWSI 

Plant water stress is very important indicator to evaluate the causes of variability in crop 

yields and development of water stress management strategies for optimal yield productions 

(Moran et al. 1997). The crop water stress index (CWSI) is an indicator for monitoring and 

quantifying crop water stress as well as for irrigation scheduling. The CWSI is based on the 

relationship between difference between air and canopy temperature (Tc−Ta) (Jackson et al. 

1980) and the atmospheric vapour pressure deficiency (AVPD) to develop a non-stressed 

baseline equation for the growing season, which can be used to monitor water status and 

planning irrigation scheduling. There are only a few studies that have reported on using 

ground based measurements to compute CWSI to measure the water status of the sugarcane 

crop for irrigation scheduling in humid (for example Lebourgeois et al. 2010) and in arid 
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regions (for example Boroomand-Nasab et al. 2005) in spite of the fact that sugarcane crop 

covers the soil during approximately two thirds of its growing cycle. For example, in humid 

regions of Reunion Island, Lebourgeois et al. (2010) tested the use of a TIR derived CWSI as 

an in situ measurement of the water status of sugarcane. They used ground based 

measurements for crop surface temperature, soil moisture and drainage to derive the ratio 

between actual and maximum evapotranspiration (ETa/ETmax) values. Their results showed 

significant correlation between AET/MET and CWSI which indicated the effectiveness of the 

CWSI to measure the water status of the sugarcane crops. Silva et al. (2008) and Holanda et 

al. (2015) also utilized CWSI to evaluate water stress in sugarcane.  

The RS based detecting of CWSI is through the measurement of a crop's surface temperature. 

The RS-based canopy temperature measurements is based on the fact that the water stress 

cause decrease in the transpiration rate (process responsible for cooling the plants) which 

results in increase in canopy temperature. However, crop temperature is sensitive to other 

variables, such as air temperature, relative humidity, wind speed, and incoming irradiance. 

The CWSI minimizes the effect of these environmental variables by normalizing the 

temperature differences between the plant and the air. The value of CWSI ranges from 0 to 1, 

representing no water-stressed through to water stressed (non-transpiring) conditions, 

respectively. Numerous studies have used CWSI for the assessment of crop water status and 

irrigation scheduling (Alderfasi and Nielsen 2001; Gontia et al. 2008; Oapos et al. 2011), 

however, they have not been used to predict the exact time and amount of irrigation needed to 

maintain the crop under optimum conditions. Remote sensing data from the NOAA AVHRR, 

LANDSAT TM, ASTER, and MODIS satellites collect information in thermal infrared (TIR) 

which can be used to determine surface temperature and to estimate CWSI. For example, 

Khomarudin and Sofan (2006) estimated CWSI using MODIS for paddy fields in eastern 

Java and obtained significant correlations between CWSI, NDVI and soil moisture storage.  

A2.1.8 Remote sensing based Surface Water Balance 

 

The remote sensing based surface water balance (RS-SWB) modelling approach estimates 

soil water content, cumulative ET and IWR (Neale et al. 2012). However, for an accurate 

estimation of these components the model requires information such as water inputs via 

precipitation and irrigation, as well as soil moisture properties such as the amount of soil 

water storage in the root zone. Accurate values of soil water content are necessary in the 

model and can be estimated on the basis of water balance maintained for long periods. 
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However, uncertainties on the spatial variability of the water inputs (mainly rainfall) can 

result in a bias in the water balance estimation, although this may not necessarily be a 

problem if sub-field scale management is required (assuming rainfall is evenly distributed 

over the spatial scale in question). What is likely of more concern is the dearth of information 

concerning those soil properties related to water retention, field capacity, and wilting point 

which may limit the practical operation of these models. 

Remote sensing based estimations of root zone water storage capacity are generally based on 

field observations and look up tables (Schuurmans et al. 2003; Sanchez et al. 2010; Sanchez 

et al. 2012). A few recent studies proposed the optimization-calibration and inverse 

modelling approaches for soil root zone moisture estimation. Others use a combination of 

SWB models to estimate water stress from canopy temperature (Colaizzi et al. 2003) or ET 

estimates based on SEB models (Anderson et al. 2007; Crow et al. 2008) to calibrate the 

fraction of water depleted derived from the SWB model (Hain et al. 2009; Campos et al. 

2016). The rationale of all of these approaches is that any plant water stress must be 

equivalent to the soil water stress, a stress index that can be determined by the 

parametrization of the soil properties. With proper initialization and maintenance of a SWB 

model, the two approaches of determining water stress can result in similar values. However, 

no information is available on the use of such approaches as the basis of irrigation 

scheduling.  

A2.2 RS-SEB for Sugarcane  

Remote sensing surface energy balance models have been applied for field scale irrigation 

water management in sugar cane. In Brazil, Ferreira et al. (2016) evaluated the water 

consumption of irrigated sugarcane using SEBS driven products derived from Meteosat 

Second Generation (MSG), SPOT/VEGETATION, Terra/MODIS satellite data and 

meteorological observations data. They compared the ETa derived from the SEBS (ETa-

SEBS) with standard ETc obtained under standard conditions using ETo and the FAO based 

Kc. Their results showed good correlations between ETa-SEBS and ETc (FAO) when 

sugarcane was at maximum development stage with Kc = 1.25. The ETa-SEBS values was 

found to overestimate the water use during the late sugarcane development stage as compared 

to FAO Kc value of 0.7. The results of Ferreira et a. (2016) were found to be consistent with 

those of Inman-Bamber and Mcglinchey (2003) for irrigated sugarcane in Australia and 

Swaziland, who also reported a higher Kc of 1.25 for the final growth stage. In another study 



50 

in Brazil, Mendonça et al. (2012) used the SEBAL algorithm and MODIS satellite images to 

estimate daily sugarcane ETc in North Fluminense Region, Rio de Janeiro State. They found 

a high correlation between values of ET integrated over 24 hours (ET24h) as estimated with 

the method FAO (PM-FAO56) and the values of ET24h estimated by SEBAL. In South 

Africa, Jarmain et al. (2014) used data from the Disaster Monitoring Constellation (DMC) 

sensor (G, R and IR) every ten days over their study period, and TIR data from MODIS 

(1km), both resampled to 30m spatial resolution. They included local meteorological and 

SRTM-DEM data in SEBAL to estimate evapotranspiration (ET), biomass, yield production 

and WUE. From the results, they demonstrated how spatial WUE information can be applied 

at operational level in South Africa. For Hawaiian sugarcane, Zhang et al. (2015) used the 

METRIC model to obtain the spatial distribution of ETc and Kc from Landsat7 time-series 

data. They found a high correlation (0.82) between METRIC derived ETc and Kc with the 

satellite derived Kc using canopy ground cover measurements. In Ethiopia, Genanu et al. 

(2016) compared SEBAL, SSEB and the Operational Simplified Surface Energy Balance 

(SSEBop) to estimate and map actual evapotranspiration (ETa) of the Wonji Shoa Sugarcane 

Estate using Landsat7 ETM+ images. These results showed higher ETa values for well-

watered sugarcane fields in the mid-season growth stage, ostensibly confirming the greater 

consumption of water during this period of active development. In northern NSW Australia, 

Yang et al. (1997) estimated ET using Landsat TM data for a sugarcane field based on the 

concept of a vegetation index / temperature trapezoid (VITT). They used TIR band to extract 

surface temperature (Ts) and the Red and NIR to derive NDVI. Their result showed a 

consistent negative correlation between Ts and NDVI over the sugarcane field and they 

confirmed that the VITT concept showed potential for evaluating field water availability and 

assessing the variation on actual ET rate at a local scale, even without the need to invoke 

complex atmospheric corrections to the image data.  

A2.3 The use of remotely-sensed vegetation indices and basal crop coefficient  

The general Kcb curves constructed using the FAO-56 method describes ETc for standard crop 

under optimum conditions. However, simple use of the time-based curves such as those 

depicted in Figure 1 may not adequately represent the actual crop development and water use 

conditions at a given time. Many different factors can cause deviations from the ideal curves, 

including local weather conditions, plant and soil nutrient status and soil water content. Soil 

moisture is not the only constraint to plant growth. In recognition of the realities of crop 

growth and development,  FAO-56 recommends adjustments to the Kcb curve to estimate 
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ETc. But tis is easier said than done; time-based Kcb curve adjustment is operationally 

difficult and requires considerable skills, time, and effort to achieve with any degree of 

accuracy.  

Optical, multispectral vegetation indices (VIs) computed from crop canopy reflectance 

characteristics, particularly those such as the normalized difference vegetation index (NDVI) 

or soil adjusted vegetation index (SAVI) that focus on the red and near-infrared wavelength 

bands, may provide useful additional information in relation to Kc or Kcb. Such VIs, for 

example  NDVI and SAVI have been used as surrogates for basal crop coefficients (Kcb) to 

detect and quantify the spatial difference in evapotranspiration and crop growth stages, useful 

for irrigation scheduling algorithms (for example Bausch and Neale 1987; Singh et al. 2013).  

More recently, Rahman and Robson (2016) demonstrated the potential of the Green NDVI 

(GNDVI) for yield prediction on the basis that the NDVI is prone to saturation at high LAI 

typical of established sugarcane canopies. Numerous studies have observed statistically 

significant, and in most cases simple linear relationships between the Kcb and a vegetation 

index (VI) derived from multispectral satellite images (Neale et al. 1989). The basis of these 

Kcb-VI relationships is the direct relationship between Kcb and the fraction of photosynthetic 

active radiation absorbed by the canopy (fPAR); the latter which is related with the particular 

VI. Although a few early studies have shown the relationships between Kcb-VI and fPAR for  

herbaceous crops such as wheat and corn (for example Asrar et al. 1992; Baret and Guyot  

1991; Pinter et al. 1993), other workers have undertaken direct measurements of crop ET 

using lysimeters and Bowen ratio techniques for the development of empirical Kcb-VI 

relationships for different crops. Examples include the Kcb-VI relationship for potato 

(Jayanthi et al. 2007), cotton (Hunsaker et al. 2005), sugar beets (Gonzalez-Dugo and Mateos 

2008) and vegetable crops including beans (Jayanthi et al. 2001) as well as garlic, bell 

pepper, broccoli, and lettuce (Johnson et al. 2012). The Kcb-VI relationship has been 

recognized for almost every crop, but the relationship was found very important for fruit 

trees, with large variations in local cropping practice conditions (planting densities, plant 

architecture and the management of the crop understory). These localized variables have 

great influence on the actual crop coefficient values and studies have shown that values of 

Kcb derived from local VIs to be able to take care of many of these variations. Examples 

include pecan trees (Samani et al. 2009) and vineyards (Campos et al. 2010; Er-Raki et al. 

2013). Only a few studies have used fractional canopy ground cover (fc) as a factor to 

estimate crop water use with reasonable success (for example Grattan et al. 1998). Remotely 
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sensed spectral indices such as NDVI have been found to be highly correlated to fc of many 

crops (for example Trout et al. 2008), and fc can be used for accurate estimation of Kcb (Allen 

et al. 1998; Allen and Pereira 2009). With the NDVI/fc/Kcb relationships, Johnson and Trout 

(2012) used a time series of NDVI data to monitor vegetative crop ET in California. Their 

results suggested the application of RS based technique in timely estimation of crop water 

use, which can be useful for irrigation scheduling or water resource management. 

Other workers have investigated the relationships between VI data and ET based on thermal 

remote sensing data (Rafn et al. 2008; Sing and Irmak,2009). These methods allow for a 

determination of latent heat fluxes, hence the actual ET of crops. When these methods are 

applied over irrigated areas (where in most cases evapotranspiration can be considered under 

standard conditions) they result in a massive calibration of the single Kc-VIs relationships 

without the necessity of cumbersome and expensive field campaigns measuring ET. 

A2.3.1 Remotely sensed vegetation indices and Kcb  for sugarcane 

The relationships between remote sensing derived vegetation indices such as NDVI and 

SAVI and the fractional canopy ground cover (fc), and between fc and Kc have been 

investigated for sugar cane. For example, Zhang et al. (2015) used time-series Landsat 7 to 

measure canopy ground cover (fc) and spectral reflectance over two sugarcane fields in 

Hawaii. They found a very strong relationships between sugarcane NDVI and fc (R
2 = 0.97) 

and also fc and sugarcane crop coefficient (Kc) (R
2 = 0.89). The Kc was calculated from ETo 

based on nearby weather station network data, and sugarcane crop evapotranspiration (ETc) 

based on ground-based measurements. Regression analyses was used  to convert the satellite 

NDVI to Kc maps, which in turn was used to create satellite-based ETc maps using a ETo map 

created by spatial interpolation of nearby weather network data. In an another study, Bappel 

et al. (2005) determined the relationship between LAI and NDVI generated from time-series 

SPOT4  and SPOT5 satellite images for a sugarcane crop in Reunion Island. They found a 

strong relationship between LAI and NDVI using an exponential function (R2=0.86) and used 

NDVI profiles to estimate LAI on a daily basis. Figure A4 shows the relationship between 

sugarcane LAI and SPOT derived NDVI  (Bappel et al. 2005). It can be seen that NDVI 

increases rapidly until a LAI of 2, and then in typical fashion associated with NDVI and LAI 

as the number of leaf layers impede penetration of the radiation into the deeper parts of the 

overlayed canopy, the NDVI-LAI response curve begins to saturate.  
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Figure A4 The relationship between sugarcane LAI and SPOT derived NDVI from Bappel et 

al (2005). 

 

Singh et al. (2016) computed Kc, Ts and albedo from time-series NDVI data derived from 

Landsat-8 to estimate sugarcane crop water requirement in India. They found high correlation 

between ground-based Kc and NDVI and surface albedo. They estimated that the quality of 

the data generated in this approach could reduce water consumption by 12.5% compared to 

the ‘conventional approach’. In South Africa, Bastidas-Obando et al. (2017) combined 

environmental stress functions and LAI to calculate an hourly variable canopy resistance (rc) 

value to predict sugarcane water demand and crop water productivity for both rain-fed and 

irrigated fields. The LAI for sugarcane was estimated NDVI derived from Landsat7 TM time-

series using the empirical relationship defined earlier by Bappel et al. (2005). Their study 

confirmed the sugarcane’s ability to regulate and maintain a constant canopy resistance rc 

with different LAI under non water-stressed and optimal climatic conditions. However, they 

suggested the need for more experimental data and longer time series from other countries to 

validate their stress functions parameters.  

It is important to note that any Kc - NDVI relationship can vary due to evaporation from the 

soil, especially during the initial sugarcane growth stages when fc is small. It has been 

recommended that is situations where Kcb is less stable than Kc, the Kc should be computed 

on a weekly basis to smooth out possible daily fluctuations (Calera-Belmonte et al. 2005).  
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A2.3.2 Remote sensing based Penman-Monteith direct method (RS-PM) 

 

As discussed earlier, the Penman-Monteith (P-M) equation is used to estimate the 

evaporation from soil (E) and transpiration from plant leaves (T) from the canopy parameters 

related to the surface properties such as the surface and canopy resistances and the net 

radiation (Rn). These parameters are related to RS derived leaf area index (LAI), crop height 

(hc), and the surface albedo (r). The variable canopy resistance is found to be inversely 

related to the photosynthetically active LAI, an index that actively contributes to the surface 

heat and vapour transfer (Allen et al. 1998). The maximum resistance of a single leaf is crop-

specific and differs among crop varieties and crop management (Allen et al. 1998), but a 

fixed value of 100 m/s can be considered in ‘operational’ approaches (D’Urso et al. 1999). 

The canopy height is used to estimate rc, The P-M formulation varies with climatic 

conditions, however for well-watered agricultural fields no correction is needed. Several 

studies have determined canopy parameters such as surface albedo and LAI from VIS-NIR 

observations, either using empirical relationships between VIs or physical radiative transfer 

models (Myneni 1997; Shi et al. 2016). The P-M  method forms the basis of the MOD16 

global ET product (Mu et al. 2011), ET estimates and irrigation management and for and 

irrigation advisory service presently operational in Italy, Austria, and Australia (Vuolo et al. 

2015a). 

A2.3.3 Calculation of Crop Water Requirement (CWR) for sugarcane irrigation 

scheduling 

The standard FAO approach can be used to calculate CWR and that can be adapted to remote 

sensing data. The pixel-based CWR map can be transformed into a vector map by taking plot 

boundary or water user group boundary layers in GIS. The resulting irrigation advice for a 

generic plot (i) is then calculated from a simple water balance equation for any given day (j) 

as shown in Eq.(A7) (Vuolo et al. 2015a) as. 

𝑑𝑖,𝑗 =  𝑑𝑖,𝑗−1 +  
𝐼𝑅𝑅𝑖,𝑗−1

𝜂𝑖
− 𝐶𝑊𝑅𝑖,𝑗−1         (A7) 

where, IRRi,j-1 represents irrigation depth in plot i on the previous day; di,j is soil water 

depletion from a given initial value of day 0; and ηi is the on-farm irrigation efficiency. The 

irrigation water volume is then computed by multiplying IRRi,j with the plot area. 
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A3. Operational use of RS data for irrigation water management 

A3.1 Monitoring crop development at an appropriate spatial and temporal 

scale 

For practical irrigation management, RS data must be available at key stages of crop 

development as well as at key time intervals at which irrigation intervention is likely to be 

necessary. Henceforth, temporal resolution of any source data is a key consideration, coupled 

with turn-around times of any source data. There is little point in having an appropriate revisit 

capability available if the data cannot be provisioned to the end user in a timely way. Revisit 

time is only part of the challenge. Ground visibility constrained by cloud cover and haze (eg 

smoke) is possibly the biggest constraint to temporal resolution faced by users of satellite 

image data. 

The RS data should also be of sufficient spatial resolution (‘granularity’) to resolve field-

scale variability in plant characteristics, or at least be able to provide information on spatial 

variability at a scale at which the irrigation is to be managed. Spatial resolution versus 

management scale is an important consideration. Having source data at a spatial resolution 

which exceeds the subsequent management scale allows for appropriate ‘averaging’ or spatial 

integration of key parameters to achieve the required spatial management scale by the user of 

the particular model. This is often more desirable than having a source that integrates 

potentially important variability indicators, unseen, before ingestion by an analyst into 

calculations or predictive tools.  

A3.1.1 Optical satellite remote sensing systems 

The combination of both planned and existing satellites into ‘virtual constellations’ can help 

to overcome the temporal resolution limitation by combining all available observations from 

different sensors (Wulder et al. 2015). For example, for reflectance-based VI models that use 

visible and NIR data, the spectral bands can be available at spatial resolutions (pixel size) 

ranging from 5 to 30 m from a variety of commercially available sensors, for example World 

View (2.5 m), Rapid Eye (5 m), DMC (22m), and Deimos, IKONOS, Digital Globe) as well 

as freely available from the Landsat-8 and Sentinel-2A.  Currently, Landsat-8 and Sentinel-

2A together provide data with a time resolution of around one image per 10-16 days, 

although this may not be considered sufficient for adequately monitoring of crop 

development. The time series information of both sensors can be accessible through USGS 
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(http://glovis.usgs.gov/) and Copernicus (https://cophub.copernicus.eu/) websites. In addition, 

companies like Amazon S3 (https://aws.amazon.com/es/public-datasets/landsat/) and Google 

Earth Engine (https://earthengine.google.com/) provide time catalogues of image data 

available from the two sensors. 

It could be presumed that the need for irrigation water management and the implementation 

of operational services around irrigation management would be heightened in regions of low 

rainfall and high atmospheric demand; in other words in regions that experience 

comparatively infrequent cloud cover. However the tropic and sub-tropical regions where 

sugar is typically grown, even when experiencing significant periods of little rain, may 

nonetheless experience extended periods of cloud cover.  

The recently-launched Sentinel-2b satellite (https://earth.esa.int/web/guest/missions/esa-

operational-eo-missions/sentinel-2) will add further flexibility to the provision of optical data. 

Remotely-sensed SEB based ET products rely upon TIR data sources and the thermal bands 

limit the spatial resolution of derived products, in many instances to a size not appropriate for 

small agricultural fields (Allen et al. 2011). Such medium resolution ET maps contain mixed 

pixels of crops and other vegetation (for example shelter belts and pasture), which results in 

mixed surface temperature signals and makes the ET retrievals difficult to interpret. The 

thermal band pixel size ranges from 100m for Landsat-8 to 1000m for MODIS-AQUA, 

MODIS-TERRA and Sentinel-3, and therefore additional data sources and downscaling 

algorithms are required to improve the temporal and spatial resolution. The strength of any 

RS-SEB model is the assessment of surface ET which is used as an indicators of water stress 

and irrigation performance, and the measurements of canopy temperatures from thermal data 

provide addition information for irrigation management. Research targeting disaggregation 

techniques is underway to increase the effective spatial resolution of the  thermal data to be 

comparable to the optical wavebands utilised (Semmens et al. 2015). In addition, use of the 

airborne thermal cameras has improved the spatial resolution up to 2–5m and produced high 

resolution temperature maps (Berni et al. 2009), although airborne systems have their own 

operational challenges and opportunities insofar as flexibility and cost. Some of these will be 

discussed later. 

A3.1.2 Radar remote sensing 

The use of radar images (microwave remote sensing) is an alternative solution to dealing with 

the limitations of optical images and cloud cover. Sentinel-1, a two satellite constellation 

https://aws.amazon.com/es/public-datasets/
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carries an advanced radar instrument (synthetic aperture radar, SAR) operating in C-band (C-

SAR) to provide an all-weather, day-and-night imaging capability of multiple spatial 

resolutions in different scanning modes (Strip Map Mode: 80 km Swath, 5m; Interferometric 

Wide Swath: 250 km Swath, 5x20 m, etc.), with a revisit cycles of 6 days (combined) and 12 

days (single). The SAR data acquisition strategy results in inhomogeneous data archives with 

image products differing in the spatial resolution, revisit frequency, and radiometric accuracy. 

Therefore the choice of the data set for a particular application is a trade-off between those 

three properties. Several studies have used Sentinel-1 data for soil moisture monitoring (for 

example Hornacek et al. 2012; Gruber et al. 2013). Baghdadi et al. (2009) used TerraSAR-X, 

PALSAR/ALOS and ASAR/ENVISAT  over Reunion Island to determine the sensitivity of 

different radar parameters (wavelength, incidence angles, and polarization) to sugarcane 

growth stages. They found high correlations between the radar backscattering coefficients 

and NDVI derived from SPOT-4/5 images as a function of sugarcane crop parameters. They 

also noted that the decrease in NDVI for fully mature sugarcane fields due to drying of the 

sugarcane (water stress) was also observed in the radar signal. 

A3.1.3 UAV Systems 

The significant and fast-paced technological advancements in small-sized, unmanned aerial 

vehicles (UAVs) equipped with GPS and high quality remote sensing devices offer numerous 

opportunities for irrigation-related management among other (for example Ballesteros et al. 

2015; Candiago et al. 2015). The major advantages of using UAV systems in the context of 

tactical crop scouting, including, potentially for irrigation management is cost-effectiveness, 

especially for small scale operation, the ability to collect very high spatial resolution data, 

from centimetres to even sub-centimetre, and very high positional accuracy (X,Y,Z).  

Like any form of low-level airborne sensing including low-level conventional manned 

aircraft, the most important benefit of using UAV system is that they can operate under 

cloud, and so long as images are corrected appropriately for varying target illumination 

associated with cloud cover, they offer unprecedented scheduling flexibility (Padua et. al. 

2017), bearing in mind the limited weather conditions (wind speeds, actual precipitation) and 

regulatory conditions (altitude, visible line of sight, proximity to populated areas and events) 

under which flights can be undertaken. 

The UAV systems can carry a large variety of sensors ranging from a low cost commercial 

RGB cameras to more expensive multispectral, near infrared, thermal and hyperspectral 
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cameras and LiDAR sensors (Klemas 2015). Different camera sensors (single or in 

combination) are used for different applications and the resultant photos/images are 

processed to generate orthophotographs (Turner et al. 2012), or to build digital surface 

models (DSMs) (Nex and Remondino 2013). In agriculture, numerous studies have utilised  

UAV data to compute different plant parameters (LAI, fc) and crop parameters (vigour, 

quality, yield) measured during the entire growing season (for example Ballesteros et al. 

2015), as well as providing information on crop health and nutrient status (Candiago et al. 

2015). Navia et al. (2016) used UAV-based multispectral data to compute NDVI to assist 

farmers in their assessment and monitoring of plant health. Bendig et al. (2014) used RGB 

data with VIs and plant height to determine biomass of barley. They found optical images to 

be highly suitable for deriving plant height from Crop Surface Model for biomass estimation. 

In sugarcane, UAV data has been used to detect stalk growth and infer soil moisture for 

irrigation scheduling. Luna and Lobo (2016) used UAV data to map crop planting quality of 

sugarcane in Nicaragua, while De Souza et al. (2017) used UAV and other proximal data for 

managing spatial variability.  

Bellvert et al. (2013) demonstrated the feasibility of using high-resolution thermal imagery 

for irrigation management across vineyards. They found the best time to acquire thermal 

images is around noon, because of less shadow effects and also higher sensitiveness for the 

identification of water stress problems. Baluja et al. (2012) used both multispectral and 

thermal UAV data to determine water status variability in vineyards for better irrigation 

management at the fruit parcel scale. Zarco-Tejada et al. (2012) used UAV- a micro-

hyperspectral and a thermal camera to detect of water stress in a citrus orchard.  

A potential limitation of these platforms is the fact that large scale monitoring requires 

considerable post-processing capability to create mosaic imagery, and this is exacerbated by 

the difficulties in feature matching on overlapped images in homogenous area, for example 

within a uniform crop. However it is acknowledged that developments in cloud-based data 

processing is going to be key in meeting this particular set of challenges.  

Despite these limitations, when used under optimal conditions, the UAV data can serve as a 

potentially valuable source of very high resolution data in real time and on demand; a 

particularly useful capability for filling data gaps in any time-critical tool for irrigation 

management.  
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A3.1.4 Filling the ‘time gap’ in RS-based irrigation scheduling 

As discussed previously, crop canopy reflectance measured from multispectral, time series 

remote sensing data can be used to infer and map Kcb, or related variables, to describe the 

potential crop water use. This is done either through Kcb-VI relationships, or using more 

complex models. The use of ‘gap filling’ techniques reliant upon images taken at close time 

intervals can be used to fill the gaps in missing data owing to, for example, cloud cover.  

A3.1.5 The need for soil moisture/evaporation measurements 

For adequate determination of irrigation water requirement (IWR), both VI-based Kcb and 

remote sensing P-M models require the assessment of soil water content (Sanchez et al. 

2012). Following the FAO56 procedures, the RS-based IWR can be calculated under water 

stress condition such as controlled deficit irrigation or supplementary irrigation. For this, the 

knowledge of the degree of desired water stress is required to calibrate the methodology. The 

model computes soil evaporation separately by applying a soil water balance at the top soil 

layer as proposed by Allen et al. (1998) and with some modifications by (Torres and Calera, 

2010). This approach requires the information on the irrigation timing and amount and can be 

known from irrigation assessment scenarios. In absence of field data, as an alternative, 

synthetic crop coefficients (Mateos et al. 2013) can be used to estimate mean soil evaporation 

derived from canopy cover estimates. Microwave RS data could provide insight on the bare 

soil evaporation, however spatial resolutions of the current sensors SMAP and SMOS (20 

km) are very coarse for the agriculture scale applications (Merlin et al. 2012). 

A4. Examples of other remote sensing-based irrigation advisory 

services in Australia and other countries 

Quite a few remote sensing based irrigation management services are operational worldwide 

to assist in different farm management activities. Those in operation over Australia include  

IrriSAT (https://irrisat-cloud.appspot.com; Deakin University), IriSatSMS (CSIRO, 

Australia) and IRRiEYE (http://www.irrieye.com). Others include IRRISAT (the Italian On-

line Satellite Irrigation Advisory Service) and EO4Water (http://eo4water.com) in Austria. 

These operate based on the P-M method (Vuolo et al. 2015a) and NDVI-Kc relationships. 

The LAI is calculated from the crop surface reflectance, and the local climatic data are used 

to compute crop ET and suggested irrigation depth (pixel and plot scale). The RS data from 

different platforms such as Landsat-8, Sentinel-2, and DEIMOS are used to derive crop 

http://www.irrieye.com/
http://eo4water.com/
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parameters (LAI and surface albedo) on a weekly basis. The information is delivered to end-

users through a webGIS tool developed in an open-source software environment suiting to 

each area based on the requirements of the local users. Figure A5 depicts a schematic of the 

data integration. 

 

 

 

 

 

 

 

 

 

Figure A5. RS and weather observations integration into a webGIS to provide irrigation 

scheduling information to users. 

 

The cloud-based IrriSAT app automates satellite processing and information delivery of 

Landsat and Sentinel data, including NDVI, and provides water management information 

across a range of scales. The IrriSAT app calculates the seasonal daily crop water use for the 

field by automatically retrieving the time series Kc values and linking them with the nearest 

weather station time series data.  Similarly, the IRRISAT service aims to provide real time 

information on agricultural water needs to farmers and managers. Irrigation needs are 

estimated using high resolution data from satellites and FAO methodology for the calculat ion 

of crop water requirements at various spatial scales (field, catchment) and temporal scales 

(real time, historical series). The information is distributed in near-real time to the users 

through SMS, email, and also provide access to web-mapping applications. Accordingly, 

IRRISAT has been deemed a “best practice” for agricultural applications by EURISY 

(http://www.eurisy.org/good-practice-campania-encouraging-the-sustainable-use-of-

irrigationwater-in-the-region_85) and by the International Selection Committee of the call for 

“Best Sustainable Practices on Food Security” for EXPO 2015 in Milan (Italy). In terms of 

cost-benefit analysis, IRRISAT demonstrated water savings of about 18% without loss of 

yield production. 
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IrriSatSMS system is an approach developed by CSIRO Australia based on the NDVI-Kcb 

relationship (Car et al. 2012) that uses satellite data, mobile phones, and webGIS tools for 

information delivery. The system was originally applied for vineyards in the Murrumbidgee 

Irrigation Area, but now covers the entire Australian. The IrriSatSMS system simplifies input 

data collection requirements and reduce both costs and complexity of information output 

(Hornbuckle, 2009). The system comprises a server that acts as a data collection portal for 

various data feeds and as a processing engine to convert these data into usable irrigation 

management information. The latest version of IrrSatSMS uses the Google Earth Engine for 

the image processing and algorithm implementation. Initially, the system delivered 

information through the SMS interface directly to the irrigators’ mobile phones, but more 

recently a web-interface (https://irrisat-cloud.appspot.com/) has been developed that allows 

user to define the target field  boundaries to get the information contained in the system. 

Information about the crop type, management, growing cycle, and soil properties are required 

to complete the water balance. 

The Satellite Irrigation Management Support (SIMS) project integrates NASA's Terrestrial 

Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, to map 

indicators of crop irrigation demand and develop information products to support irrigation 

management and other water use decisions. The system provides a capability for mapping 

fractional cover, associated Kcb, and ETc for farmland in California’s Central Valley. A 

generalized NDVI-Kcb relationship is used for near real time mapping Kcb and ETc.  A web-

based user interface provides access to visualizations of TOPS-SIMS (http://ec2-54-197-48-

121.compute-1.amazonaws.com/dgw/sims/).  

In southern Spain, time series Landsat5 images have used to obtain Kcb curves based on 

NDVI temporal changes and a web-GIS based open-source software called SPIDER was used 

to display the information (http://maps.spiderwebgis.org/webgis; University of Castilla-La 

Mancha). Currently, the system provides time series Sentinel-2a and Landsat-8 imagery and 

derived products for the entire Iberian Peninsula of Spain and Portugal. The products include 

ETo maps, NDVI, Kcb and CWR values, 24 hours after the image delivery. A mobile app 

version of SPIDER webGIS (Agrisat App) was released in 2016. 

 

 

https://irrisat-cloud.appspot.com/
http://maps.spiderwebgis.org/webgis
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A5. Pros and cons of the RS-based models for irrigation 

assessment 

For crop irrigation management, the estimation of potential ETc from the development of 

time-series RS-based Kcb and local ETo values is the main strength of spectral reflectance-

based models. The VI-based Kcb estimation for irrigation assessment has several advantages 

(Allen et al. 2011), including (a) algorithm simplicity and (b) geographical scaleability and 

application at varying spatial resolutions. However, the main weakness of Kcb-VIs for crop 

ET assessment are  (a) the uncertainty in estimating the baseline soil evaporation, (b) under 

acute water shortage, it tends to overestimate transpiration; and (c) the Kcb-VI relationships 

vary within and between vegetation types. Moreover, discrepancies in the source VI values 

for a given location can arise be due to differences in sensors’ spectral and radiometric 

resolutions (Martinez-Beltran et al. 2009), differences in the acquisition angle, atmospheric 

correction and calibration process (Fensholt et al. 2004).  These sources of uncertainty can be 

minimized by applying cross-calibration approaches and ensuring the compatibility of the 

data-sources (Martinez-Beltran et al. 2009). Additional differences might be attributed to the 

variable sensitivities of VIs to variation in stomatal response for Kcb assessment. In the 

absence of known Kcb-VI relationships for sugar, those relationships reported in scientific 

literature for different crops have proven potentially transferable to other crops; Hornbuckle 

(2014), for example concluded that the relationships developed for multitude of different 

crops are potentially valid for the assessment of vineyard ET in Australia (Trout and Johnson, 

2007). Similarly, Odi-Lara et al. (2016) and Campos et al. (2013) found that the relationship 

described by Campos et al. (2010) in row vineyards was adequate for ET assessment in apple 

trees and Mediterranean holm oak savanna.   

The remotely sensed P-M methods have similar strength and weakness to the reflectance-

based Kcb models. The P-M model approach also gets around the problem of estimating the 

resistances in the P-M formulation for well-watered canopy. The parameters are found 

strongly related with RS data (LAI, albedo and hc) that describe smooth-continuous 

functions, easily interpolated over time. The uncertain crop-specific LAI-VI and hc-VI 

relationships, difficulty in assessing the effect of the water stress in the ET process and the 

role of the soil evaporation are the main weaknesses. Anderson et al. (2004) concluded that 

the LAI-VI relationships to be relatively stable for corn and soybean using determinate VIs. 

In another study, Vuolo et al. (2013) concluded that the models and calibration parameters 

used to estimate LAI from VIs can be transferred across different environments, management 
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practices, and for multiple crops.  In addition, the availability of sensors with improved 

spectral and spatial resolution (such as, for example Sentinel-2) and also the application of 

improved methods (for example inversion) in canopy radiation transfer models to estimate 

crop biophysical parameters, can add more reliability in LAI estimation. Freely available 

packages, such as SNAP, developed by the ESA exist to estimate LAI, fc, etc from Sentinel-2 

data (https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2). 

The main shortcoming of RS-SEB models is the applicability of the ET estimates over time 

because they provide the ET estimation at the time of image acquisition (Calera et al. 2016), 

which must then be extrapolated in time based on crop physiology and crop coefficient (Allen 

et al. 2007). The time gaps between estimates of ET for all satellite systems may bias daily-

to-seasonal estimates. Furthermore, the effects of rain or irrigation events occurring between 

satellite overpasses may result in underestimation of seasonal ET. The use of images in 

interpolation close to recent rainfall events could lead to overestimation of the seasonal 

values of ET. For the estimation of the net irrigation water requite (NIWR), another issue is 

the use of ET data obtained under water stress conditions. Since the NIWR is the amount of 

water that should be applied to maintain the crop transpiring at its potential rate, the use of 

water stress ET data could lead to an underestimation of NIWR. Finally, the limited 

availability of thermal sensors in terms of spatial and temporal resolution restricts the 

development of operational applications of surface energy balance from remote sensing. 
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