Browsing by Author "Olayemi, M"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Adoption of practices to mitigate harvest losses : ASSCT peer reviewed paper(ASSCT, 2019) Patane, P; Landers, G; Thompson, M; Nothard, B; Norris, CA; Olayemi, MHarvesting Best Practice (HBP) recommends that harvesters maintain pour rates of 80-90 t/h, depending on make and model, and recommends extractor-fan speed guidelines that ensure minimal cane loss with low extraneous matter (EM). Exceeding the recommended pour rate overloads the cleaning capacity of modern harvesters and increases EM in the cane supply. To attempt to counterbalance the EM issue, it is usual to increase fan speeds above those recommended, resulting in greater cane loss. Use of HBP recommendations across the industry is low and full HBP adoption would substantially increase industry revenue. To address this, 43 replicated harvesting trials and workshops were undertaken in the 2017 harvest season across 12 sugarcane regions between Maryborough and Mossman. The performance of settings recommended by HBP were compared with each harvesting operation’s standard practice by assessing yield, CCS, bin mass, EM, fibre, sugar loss and revenue. To highlight the strong relationship between cane loss and excessive pour rates and fan speeds, treatments with higher pour rates and fan speeds and lower pour rates and fan speeds were also trialled. Results were presented to each harvesting group to inform their decision-making and promote HBP adoption. Cane loss, production and revenue data from 28 replicated and randomised trials were analysed to identify differences between industry standard harvesting practices and those recommended by HBP. We found that harvesters are typically operated at ground and fan speeds that are on average 1 km/h and 95 rpm above those recommended. The higher ground speed delivered an additional 22 t/h of cane into the machine on average but overloaded the cleaning capacity of the harvester. While the higher fan speed helped to remove the additional EM entering the machine, it also removed additional cane through the extractor with most being disintegrated, making it invisible to stakeholders. Testing indicated that mean sugar loss out of the extractor was increased by 0.15 t/ha compared with HBP settings, while there were no significant differences in EM or bin mass. Due to the additional cane being lost, less cane was delivered to the mill per hectare. Mill results across all trials identified that mean cane and sugar yields for the recommended practice were 5 t cane/ha (5.4%) and 0.8 t sugar/ha (5.7%) higher than standard practice. Neither CCS nor fibre levels were significantly different. The increased cane and sugar yields generated by the recommended settings boosted mean total grower revenue by $220/ha, equating to $173/ha after subtracting the additional harvesting costs (including fuel) and levies. Extrapolating these findings across the Australian green-cane-harvested area, full adoption of the recommended practices could deliver an additional 1.3 Mt of cane and 202,000 t of sugar valued at over $86 million for industry ($57 million in additional revenue for growers alone).Item Adoption of practices to mitigate harvest losses : final report 2016/955(Sugar Research Australia Limited, 2020) Patane, P; Landers, G; Thompson, M; Nothard, B; Norris, C; Olayemi, MHarvesting Best Practice (HBP) is predicated by two essential objectives: 1. Determining the critical point where harvesting losses can be minimised and delivered yields improved to achieve the best economic return for the grower and harvesting operation; and 2. Improved cane quality, which is determined by sound billet quality with an acceptable level of Extraneous Matter (EM). Despite significant research into the impact on harvested cane yields of higher harvester pour rates and fan speeds, use of HBP recommendations prior to the commencement of the adoption program across the industry was relatively low. Full HBP adoption across the Australian Sugarcane industry could substantially increase industry revenue with no necessity for horizontal expansion (increase in cane land).Item Improving yield and cane quality through implementation of harvesting best practice - 2019 Herbert demonstration : ASSCT peer-reviewed paper(ASSCT, 2021) Patane, P; Nothard, B; Norris, CA; Douglas, A; Pfumayaramba, T; Stringer, J; Olayemi, MIn 2019, the Australian sugarcane industry conducted a month-long demonstration with 12 trials to determine the commercial viability of harvesting best practice. Initiated by a small group of innovative growers and contractors from the Herbert region, the concept of a commercial demonstration sought to determine both agronomic and economic impacts of adopting HBP, including the assessment of possible yield gains without having a detrimental impact on extraneous matter, and economic implication for growers and harvesting contractors arising from revenue and harvesting cost changes. Two Herbert harvesting contractors participated in the demonstration comparing their standard harvesting practices to Sugar Research Australia Harvesting Best Practice (HBP or recommended practice). The results identified an average 4.8 t/ha increase in yield with no additional increase in extraneous matter for the recommended setting. A comprehensive economic analysis was conducted on each of the trials. Detailed harvesting costs and operational information, including machinery, labour, and fuel data, were collected from the respective harvesting operations. Harvesting costs and levies were $37/ha ($0.07/t) higher for the recommended setting due to higher yields, reduced harvester ground speeds and lower extractor fan speeds. Despite the higher harvesting costs, recommended settings obtained significantly higher total revenue ($151/ha, +4.7%). This resulted in an overall net benefit of $114/ha in the adoption of recommended settings (based on a 4.4% higher net revenue calculated as total grower revenue minus harvesting costs and levies). The Herbert demonstrations have proven instrumental in the acceptance of harvesting best practice for the region. The results again confirm that adapting and aligning commercial-scale harvesting practices to crop and paddock conditions have positive impacts on both yield and economic outcomes.Item Investigating losses from green and burnt cane harvesting conditions : ASSCT peer-reviewed paper(ASSCT, 2020) Patane, P; Landers, G; Thompson, M; Nothard, B; Norris, CA; Olayemi, MDespite much research into the impact of high harvester pour rates and fan speeds on harvested cane yields, there has been low adoption of HBP (harvesting best practice) across the industry. Full adoption across the Australian sugarcane industry could increase industry revenue with no necessity for horizontal expansion (increase in cane land). In order to inform industry of the potential for significant gains, 95 replicated harvesting trials and workshops were undertaken during 2017 and 2018 across 12 sugarcane regions in Queensland and New South Wales. The performance of settings recommended by HBP was compared with each harvesting operation’s standard practice by assessing yield, CCS, bin mass, extraneous matter (EM), fibre, sugar loss and revenue. To highlight the strong relationship between cane loss and excessive pour rates and fan speeds, treatments with higher pour rates and fan speeds and lower pour rates and fan speeds were also trialled. Cane loss, production and revenue data from the fully replicated and randomised trials were analysed to identify differences between industry standard harvesting practices and those recommended by HBP. Harvesters typically operate at ground and fan speeds at on average of 0.9 km/h and 95 rpm above those recommended under HBP parameters. The higher ground speed overloads the cleaning capacity of the harvester in delivering an average 21 t/h more cane though the machine. Consequently, fan speeds are increased to remove the additional EM (extraneous matter) entering the machine, which then removes additional cane via the extractor. This cane often disintegrated in the process, making much invisible. Trials indicated the average sugar loss out of the extractor increased by 0.15 t/ha over the HBP settings. However, there was no significant improvement in EM or bin mass. As a result of cane loss though the extractor, less cane per hectare was delivered to the mill. Mill analyses across the trials identified cane and sugar yields for the recommended practice were 4.9 t/ha (cane yield) and 0.7 t/ha (sugar yield) higher than standard practice. Neither CCS nor fibre levels were significantly different. Increased cane and sugar yields generated by the recommended practice translated to an increase in grower gross revenue of $181/ha., but reduced ground speeds increased the cost of harvesting by $61/ha. Subtracting the additional harvesting costs and levies from the additional grower revenue leaves a net benefit of $116/ha for the grower. Preliminary results of “good” burn trials indicate an improvement of $207/ha in grower gross revenue with lower fuel. Based on the green-cane results, full adoption of HBP could improve annual industry revenue by $44 million for growers at an additional cost of $17 million for harvesting (excluding incentives). Milling revenue would also improve by $25 million per year but this does not account for additional milling or transport costs.Item Productivity performance of climatological sub-regions within the Tully Mill area : ASSCT peer-reviewed paper(ASSCT, 2019) Stringer, JK; Skocaj, DM; Rigby, A; Olayemi, M; Everingha, YL; Sexton, JInter-annual climate variability has a significant impact on productivity in the Wet Tropics region. Climate also varies spatially, yet the impact on productivity is less well known. Two distinct climatological sub-regions (northern and southern) have been identified within the Tully mill area based on total annual rainfall and annual average daily radiation. The wetter northern sub-region is characterised by lower radiation, lower temperatures and higher rainfall than in the drier southern sub-region. Mean cane and sugar yields were analysed for the two climate sub-regions using block productivity data obtained from Tully Sugar Limited for 2000 to 2017. After excluding 2011 (Tropical Cyclone Yasi), only farms with 15 or more years of data were included. The impact of spring-summer (SONDJF) rainfall and El Niño Southern Oscillation (ENSO) phases on cane and sugar yields in the two climate sub-regions was also analysed. On average, the northern, wetter climate sub-region yielded less cane and sugar yield than the southern, drier sub-region. There were significant differences between SONDJF rainfall terciles (dry, normal and wet) and ENSO phases (El Niño, Neutral and La Niña) for cane and sugar yields in the two climate sub-regions. Cane and sugar yields were significantly lower in years experiencing high SONDJF rainfall or in the La Niña phase. This analysis validates the results of the analyses used to derive the two climatological sub-regions in Tully. Improved knowledge of how climatic conditions influence sub-regional productivity performance will assist industry extension programs and on-farm management decisions.