Browsing by Author "Wei, X"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Application of molecular markers to sugarcane breeding(2006) Jackson, P; Aitken, K; Baker, P; Foreman, J; Hewitt, M; Luckell, J; Piperidis, G; Li, J; Morgan, T; Wei, XThe CRC SIIB marker application research aims to develop and evaluate ways to apply DNA markers to Australian sugarcane breeding programs to improve breeding, selection and fast release of high performing cultivars. This research was designed as a 7-year plan, taking account of the length of time to develop relevant sugarcane genetic populations, to evaluate these in field trials for QTL mapping, and to test marker assisted selection through realised genetic gains measured in further field trials. Project 1cii (2003-2006) comprised the first phase. Research done in 1cii is being advanced further in the CRC SIIB, under project 1c7. Key results and interim progress to date toward the end objectives are reported here. Project 1cii incorporated activity already underway at the commencement of the CRC in the area of introgression breeding, and added new activities in the areas of association mapping, and improvement of elite populations. Results are presented under these three areas separately. However, data from all three components will also ultimately be combined to develop consensus linkage and QTL maps of ancestral chromosomes, and interpreted collectively for developing future practical applications. In the association mapping component of the project a “pilot study” was first conducted on a set of (154) clones representing cultivars, parents and advanced stage selections in Australian breeding programs. Marker data (approx. 1700 markers) was collected and disease resistance ratings obtained from the BSES breeding program database. Marker-trait associations were readily found, which did not appear to be due simply to variable contributions from key ancestors (ie. population structure effects). The results for smut disease were the most encouraging, and further association mapping research was planned. In a second study, 480 clones were chosen, about half of which already had data on smut resistance, and the other half selected as a family design, ultimately allowing more powerful data analysis. This population was established in three field trials in 2006 (Burdekin and Herbert regions) and will be measured for cane yield and CCS in 2007. Approximately 2600 AFLP markers were screened across all clones by July 2006, together with 22 markers identified as being significantly associated with smut resistance in the pilot study. Of the 22 markers, seven were found to be significantly associated with smut resistance (P<0.10) in a multiple regression model in the independent data, and these collectively accounted for 19.9% of the phenotypic variation in smut resistance. This result is interpreted as encouraging considering the relatively small scale of effort in the pilot study, and suggests association mapping approaches may be successful in sugarcane. However, the results also highlight (as expected) that a high proportion of marker-trait associations are not repeatable, most likely due to type 1 statistical errors and variation in linkage disequilibrium between marker and QTL. Although data in the second study are still being analysed, analyses done to date show evidence for marker-smut resistance associations: a larger number of markers are showing significance at different threshold values (P<0.05, 0.01, 0.001) than expected by the type 1 error rate. Overall we interpret the results as indicating that it should be possible to find repeatable markers for smut resistance which could be cost-effectively implemented in practice in breeding programs. However this will be a challenging activity without 4 guarantee of success. Approaches suggested for doing this, and rationale are described in section 10. Given the urgency in the Australian sugar industry to move clonal populations at all stages of selection within breeding programs toward resistance in the next few years, it is recommended that consideration be given to accelerating this component of work, with a view toward possible implementation in core breeding programs (if the activity is successful), by mid 2007.Item Improved selection systems and data analysis in sugarcane breeding programs : SRDC final report BSS250(2006) Wei, X; Jackson, PAItem Maximising genetic gain from family and within family selection : final report 011/343(Sugar Research Australia Limited, 2016) Parfitt, R; Wei, X; Stringer, JThe aim of this project is to improve the effectiveness and efficiency of selection in progeny assessment trials (PATs). These improvements will result in increased rates of genetic gain and the release of more productive varieties for the Australian sugarcane industry.Item Maximising whole-of-industry benefits from the Australian sugarcane improvement program through an optimal genetic evaluation system(2007) Wei, X; Stringer, J; Jackson, P; Cox, MCAn optimal genetic evaluation system (GES) is the backbone of any breeding program because maximising genetic gains is primarily a matter of efficient selection. A GES provides information to breeders about which individuals should be selected as parents for crossing and which ones should be selected for commercial production.At the commencement of this project, selection of both parents and clones for commercial production was principally based on the index knows as net merit grade (NMG). NMG is based on the performance of a test clone (or a cross) relative to the average of a number of commercial varieties (or corsses) for the traits of commercial cane sugar (CCS), tonnes of cane per hectare (TCH), appearance grade and fibre content. NMG was used to generate a breeding code for selecting parental clones for crossing. Cross ratio, a measure of each cross's performance relative to the whole population at each selection stage, was used to determine priority of crosses. For selecting elite clones to be retained for further testing, NMG was used in all three selection stages to determine which clones would be advanced to next stage.