Mill data analysis identifies key productivity drivers
dc.date.accessioned | 2016-06-29T01:23:15Z | |
dc.date.available | 2016-06-29T01:23:15Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The project demonstrated the yield benefits for growers who regularly obtained clean seed. A research project is using mill data to help inform and improve on-farm productivity, delivering benefit along the value chain for both growers and millers. | |
dc.identifier.other | http://library.sugarresearch.local/cgi-bin/koha/opac-detail.pl?biblionumber=4519 | |
dc.identifier.uri | http://hdl.handle.net/11079/15562 | |
dc.keywords | Optimally-adapted varieties, plant breeding and release | |
dc.language.iso | en | en |
dc.publisher | Sugar Research Australia Limited | |
dc.relation.ispartofseries | Issue 4 2016 p 7 | |
dc.subject | Milling Matters | |
dc.title | Mill data analysis identifies key productivity drivers |
Files
Original bundle
1 - 1 of 1
- Name:
- Issue 4 Page 7 Milling Matters.pdf
- Size:
- 142.43 KB
- Format:
- Adobe Portable Document Format
- Description: