Completed projects and reports

Permanent URI for this communityhttp://elibrary2.sugarresearch.com.au/handle/11079/13840

Sugar Research Australia, Sugar Research Development Corporation and BSES reports from completed research projects and papers.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Effect of neonicotinoid, pyrethroid and spirotetramat insecticides and a miticide on incidence and severity of Yellow Canopy Syndrome : ASSCT peer-reviewed paper
    (ASSCT, 2019) Olsen, DJ; Ward, AL
    Yellow Canopy Syndrome (YCS) is a condition affecting Australian sugarcane that can lead to yield losses in excess of 30% in severely affected crops. The causal agent of this condition is unknown. Insect pests are well known causal agents of a wide variety of yield-limiting crop conditions, either as vectors of pathogens, directly through their feeding damage, or as transmitters of toxins, but little has been done to evaluate insects as a possible causal agent of YCS. This paper presents the findings of a one-year field trial in which insecticides from different chemical groups and an acaricide were tested to evaluate their effect on YCS incidence and severity. Results showed a delay in the onset of symptoms and a significant reduction in the severity of symptom expression following the application of neonicotinoid and pyrethroid treatments. These treatments also resulted in a significant yield improvement relative to cane in the untreated control. The acaricide treatment was ineffective. These findings suggest further work is warranted to determine which insects are being controlled and to identify the mechanism for the positive yield response.
  • Thumbnail Image
    Item
    Is magnesium deficiency a causal agent of sugarcane Yellow Canopy Syndrome? : ASSCT peer-reviewed paper
    (ASSCT, 2019) Tippett, O; Olsen, DJ; Ostatek-Boczynski, Z
    Yellow Canopy Syndrome (YCS) is a disorder affecting sugarcane in the Australian industry, the cause of which is unknown. This paper reviews YCS research focusing on magnesium imbalance as a possible cause of the condition. Four studies were undertaken to evaluate the role of Mg in YCS incidence and severity. In Trial 1 sugarcane leaves were collected at multiple locations in the Burdekin and Herbert with samples taken from sugarcane blocks with both YCS symptomatic and asymptomatic plants. Despite adequate soil-Mg, leaf-Mg concentrations were significantly lower (p?0.05) in leaves 2, 3, 4, 5 and 6 of YCS symptomatic plants in both regions suggesting an imbalance of this critical nutrient. Trial 2 measured Mg concentrations in sugarcane leaves before, during, and after YCS symptom expression. Symptomatic cane showed decreased leaf-Mg concentrations, but this returned to normal levels once the cane recovered. Trial 3 treated YCS symptomatic cane with foliar and soil applications of Mg in an attempt to mitigate the condition. Neither treatment resulted in alleviation of the YCS symptoms. Trial 4 treated sugarcane with foliar-Mg and soil-Mg prior to onset of symptoms. Despite elevating the Mg concentration in leaves, these pre-symptomatic treatments did not prevent YCS expression and plants exhibited YCS symptoms similar to that of the untreated control. We conclude that YCS affected cane is associated with reduced leaf Mg concentrations, but it is unlikely that this is the cause of YCS per se, as concentrations were well above critical thresholds for plant health. YCS occurs independently of Mg and low Mg is an indirect effect rather than a cause. Given that disruption to plant nutrient balance has been described as a symptom of some plant diseases, we speculate that these findings suggest a biotic causal agent.