Completed projects and reports

Permanent URI for this communityhttp://elibrary2.sugarresearch.com.au/handle/11079/13840

Sugar Research Australia, Sugar Research Development Corporation and BSES reports from completed research projects and papers.

Browse

Search Results

Now showing 1 - 10 of 24
  • Thumbnail Image
    Item
    Support of cane farmer trials of enhanced efficiency fertiliser in the catchments of the Great Barrier Reef : Final report 2016/807
    (Sugar Research Australia Limited, 2022-01) Connellan, J; Thompson, M
    There is growing pressure from community and government for farmers located within the Great Barrier Reef catchments to reduce nutrient losses. Enhanced Efficiency Fertilisers (EEFs) provide an opportunity to improve nitrogen (N) fertiliser uptake by sugarcane crops by better matching N supply with crop demand. Complementary benefits from improving fertiliser N uptake efficiency are the resultant improvements in nitrogen use efficiency (NUE) and reduced risk of nitrate losses.
  • Thumbnail Image
    Item
    Nitrogen accumulation in biomass and its partitioning in sugar cane grown in the Burdekin : ASSCT peer-reviewed paper
    (ASSCT, 2016) Connellan, JF; Deutschenbaur
    Nitrogen is a key component of metabolic processes in plants and due to its mobile nature in soils is often a limiting factor in achieving maximum yield in commercial sugarcane crops grown in Australia. Demand for N depends upon a crop’s yield potential which is determined by climate, crop age and class and management practices (Muchow and Robertson, 1994). Determining the correct amount of nitrogen required to achieve maximum cane yield while minimising losses to the environment is a difficult task; however developing a basic understanding of nitrogen accumulation in biomass and the rate at which it accumulates will provide useful insights for agronomists, industry advisors and farmers. There have been few studies into the accumulation of nitrogen in the above-ground biomass of sugarcane in Australia. Wood et al. (1996) investigated the accumulation of N in the above ground biomass of two cultivars (Q117, Q138) and confirmed earlier findings from work in South Africa conducted by Thompson (1988), that most of the N was taken up in the first six months following planting/ratooning. In a recent review, Bell et al. (2014) reported that greater than 90% of the total above-ground N uptake occurs in the 200 day period after planting/ratooning. Few studies have been conducted into the accumulation of nitrogen in below ground biomass (roots and stool) of sugarcane in Australia. Bell et al. (2014), summarised the limited data collected to date and suggested that N in stool and root accumulates at about 20 kg N/ha/year while a further 10 kg N/ha/year accumulates in root material down to 60 cm. The objective of this study was to gain an insight into nitrogen accumulation in the above and below ground biomass of sugarcane and its partitioning in crops grown under irrigation in the Lower Burdekin region of Australia.
  • Thumbnail Image
    Item
    Does ratoon age impact on N-fertiliser requirements in the Wet Tropics? : ASSCT poster paper
    (ASSCT, 2019) Skocaj, DM; Schroeder, BL; Park, G; Hurney, AP
  • Thumbnail Image
    Item
    Aspects of temporal N management in sugarcane in sub-tropical Queensland : ASSCT peer-reviewed paper
    (ASSCT, 2019) Panitz, JH; Schroeder, BL; Skocaj, DM; Salter, B
    The proximity of the Australian sugar industry to the Great Barrier Reef (GBR) has resulted in ongoing concerns about elevated concentrations of the dissolved inorganic nitrogen (DIN) in the near-reef environments due to sugarcane production practices on-farm. Although the nitrogen (N) guidelines within the SIX EASY STEPS nutrient-management program are generally appropriate, scope exists for fine-tuning of N application rates for specific circumstances. In particular, enhanced-efficiency fertilisers (EEFs), such as urea coated with 3,4-dimethylpyrazole phosphate (DMPP-urea) and polymer-coated urea (PC-urea), offer promise potentially to improve nitrogen-use efficiency (NUE) in sugarcane production and reducing DIN losses to the GBR. Temporal N-management strategies using these EEFs were assessed within a randomised complete-block field trial conducted in a sub-tropical environment on a well-drained soil supported by a concurrently run shorter-term pot experiment. There were no significant yield responses to applied N, split applications or use of EEFs in the trial in either the plant or first-ratoon crops. Rainfall measured during these seasons would not have resulted in excessively wet conditions at the trial site and may have contributed to the lack of responses to EEFs. Increased N-uptake by the crop, due to the use of N strategies away from the standard practice (i.e. by using EEFs or split applications of urea), improved NUE values based on crop N, but this did not always translate into any improvements in yield. The highest partial net returns in the plant and first-ratoon crop corresponded to the control treatments. Urea applied at 120 kg N/ha in a single application resulted in the next best partial net returns in both crops. This appeared to be the most appropriate strategy to minimise risk to growers. The cost of EEF fertilisers negatively affected the partial net returns, with DMPP-coated urea being more affordable than the poly-coated urea. The results of the pot experiment that included two sugarcane cultivars supported these outcomes. Further work, across seasons (dry, wet and 'normal'), is needed to evaluate more fully the potential of EEFs for use in specific circumstances.
  • Thumbnail Image
    Item
    Nitrogen availability from legume and past fertiliser history : ASSCT peer-reviewed paper
    (ASSCT, 2019) Salter, B; Kok, E; Skocaj, DM; Schroeder, BL
    It is likely that land-based activities within the Australian sugar industry have a negative effect on the quality of water in the Great Barrier Reef lagoon. Improvements to nitrogen use efficiency (NUE) are likely to require a greater understanding of processes affecting N availability, crop-N demand and uptake in sugarcane farming systems. Two issues associated with improving N management were investigated. Firstly, should fertiliser-N recommendations for ratoon crops be altered following a good legume fallow? Secondly, what contribution do past fertiliser-N management practices have on N uptake? Field experiments were established at Mackay. The first- and second-ratoon crops were fertilised at either 0 or 150 kg N/ha (0N; 150N). This followed a fallow period where a bare or soybean fallow were established and a plant crop that received 138 kg N/ha (bare fallow) or 18 kg N/ha (legume fallow). In the third and fourth-ratoon crops, due to a lack of any significant response to fallow management, the trial was altered to investigate the influence of previous N management on crop-N response. Plots either received 0N or 150N following a history of 0N or received 0N or 150N following a history of 150N. Crop-N uptake, leaf-N, soil mineral-N, crop yield and NUE data were collected. Results showed that the soybean fallow had no lasting N contribution through the crop cycle when N rates in the plant-cane crop were reduced as recommended in the SIX EASY STEPS. Based on this, fertilising ratoons at 'normal' N rates following legume fallows should be maintained. In the third-ratoon crop, where there was a history of 150N application, crop-N uptake was greater than where there was a history of 0N application. Cane yield at 0N was higher where there was history of 150N than 0N. These effects were not present in the fourth-ratoon crop. The results either showed a small fertiliser-history effect or were associated with greater N uptake by a crop in better condition.
  • Thumbnail Image
    Item
    Spatial distribution of potential soil constraints affecting nitrogen management in the Wet Tropics : ASSCT peer-reviewed paper
    (ASSCT, 2019) Skocaj, DM; Schroeder, BL; Hurney, AP; Rigby, A; Telford, D
    Position in the landscape and climatic conditions experienced during the growing season, especially following the application of nitrogen (N) fertiliser, has important implications for crop growth, N uptake and N losses. Understanding the spatial distribution of soils where crop growth and responsiveness to applied N may be constrained in wet or dry years will allow growers and advisors to refine N-management strategies. To identify soils where crop growth and responsiveness to applied N may be restricted, a system of grouping soils that better reflected agronomic performance under different climatic conditions was required. The categorisation system considered position in the landscape, N-mineralisation potential, soil water-holding capacity in both wet and dry years, propensity to waterlog in wet years and presence of a water table in wet years. In dry years, waterlogging and the presence of a water table do not impact crop growth to the same extent as moisture availability, and, hence, in dry years, it is more important to categorise soils based on water-holding capacity. The major sugarcane-growing soils in the Tully and South Johnstone mill areas were categorised using this system. This resulted in five soil groups to describe the impact on crop growth and N responsiveness in wet and dry years. Given the application of N fertiliser to ratoon crops predominately occurs around spring, wet years were defined as receiving high spring-summer rainfall, whereas dry years were defined as receiving low spring-summer rainfall. Classifying wet and dry years according to spring-summer rainfall also allows growers and advisors to refer to seasonal climate forecasting indices for guidance on the likelihood of experiencing a wet or dry year. In wet years, the impact on crop growth, responsiveness to applied N and potential for lower N uptake is greatest for soil group five. These soils tend to occur in the lowest positions in the landscape, experience severe waterlogging and a persistent water table. They are also subject to frequent water inundation following extreme rainfall events. The spatial identification of soil constraints will complement the development of whole-of-farm nutrient-management plans in the Wet Tropics region. Knowledge of soil constraints influencing sugarcane growth and responsiveness to N will allow growers and advisors to better identify areas where nutrient-management strategies may require further fine-tuning. This information may also be of value in improving other management decisions including varietal selection and harvest scheduling
  • Thumbnail Image
    Item
    Effect of harvest time on N-fertiliser requirements in the Wet Tropics : ASSCT extended-abstract paper
    (ASSCT, 2019) Skocaj, DM; Schroeder, BL; Park, G; Salter, B
  • Thumbnail Image
    Item
    Assessing the real nitrogen benefits to subtropical cane from soybean break crops : Final report 2016/404
    (Sugar Research Australia Limited, 2018) Rose, TJ
    Soybeans grown as a break crop in subtropical cane rotations can fix substantial amounts of nitrogen (N), some N remains in residues even after the bulk of N has been removed in harvested beans. However, there is concern among growers and advisors that much of this N may be subsequently lost over the winter fallow period prior to cane planting in spring. This project measured the amount of N fixed in cane paddocks and quantified N lost from soybean residues over the 2017 winter fallow in three fields differing in soil type.
  • Thumbnail Image
    Item
    A review of nitrogen use efficiency in sugarcane
    (Sugar Research Australia Limited, 2014) Bell, MJ
    The Great Barrier Reef (GBR) is the world’s largest coral reef ecosystem, providing both substantial economic benefit to Australia and significant international ecological value. The health of the GBR is under pressure from sediments, pesticides and nutrients (especially nitrogen) discharged from nearby catchments. Discharge of nitrogen is of particular concern as it stimulates outbreaks of the Crown of Thorns Starfish, a major predator of GBR corals. Recent research has shown that the amount of nitrogen fertiliser applied in excess of crop uptake is an important determinant of nitrogen discharge from catchments, so increasing the efficiency of nitrogen use in cropping systems is an important step in protecting the economic and ecological benefits provided by the GBR. Importantly, an increase in nitrogen use efficiency (NUE) also offers opportunities to improve productivity and profitability of agricultural industries, with such benefits a major incentive for industry adoption and practice change. The Australian sugarcane industry is a significant contributor to the anthropogenic loads of nitrogen entering the Great Barrier Reef lagoon, with recent estimates in the Reef Water Quality Protection Plan (2013) suggesting it contributes 18% and 56% of particulate and inorganic nitrogen loads, respectively. A focus on improving NUE in the Australian sugar industry to reduce these loads wherever possible is a logical outcome from these statistics. While the relative impact of dissolved inorganic nitrogen (DIN) and particulate nitrogen (PN) is still uncertain, recent NUE forums in the sugar industry in 2014 identified clear target reductions in DIN that would be needed in order to significantly improve water quality in line with Reef Plan (2013-18) targets. The forum also identified a clear need for a joint industry-government funded research program to improve NUE in sugarcane cropping systems. The review conducted for this report was commissioned and funded by the Australian Government Reef Programme to provide a foundation for this joint NUE research program. The review was tasked with providing an improved understanding of past and current research effort and available field trial information (both published and unpublished) relating to nitrogen management in the sugar industry. From this perspective the review was then tasked with identifying research gaps and opportunities for future research projects and field trials that would collectively contribute to improving NUE from both agronomic and production perspectives as well as delivering significant reductions in nitrogen lost to waterways and the Great Barrier Reef lagoon. It is widely recognized that in any crop, the demand for N is determined by the size of the crop and the fundamental efficiency with which that crop produces a unit of biomass or harvested product from a kg of acquired N (N use efficiency – NUE). Therefore a good understanding of yield potential at the spatial scale of the productivity unit (i.e., farm, several blocks of similar productivity, individual blocks or within-block) about which N fertilizer management decisions (rate, form, placement, timing) are made is required, along with an understanding of how that yield potential varies with seasonal conditions. Collectively, this could be called seasonal ‘block’ (or productivity zone) yield potential, and it will produce a crop N demand that may vary from year to year. The sugar industry is currently operating at the district level (generally comprising several thousand cropped hectares across variable soil types and landscapes), and basing N demand for all growers in the district on the best farm yield ever achieved over a 20 year time frame. It is apparent that overall NUE could be improved by basing N fertiliser inputs on the seasonal yield potential of the productivity unit.
  • Thumbnail Image
    Item
    SaveN Cane : developing selection tools for N-efficient sugarcane
    (2015) Schmidt, S; Lakshmanan, P; Cox, M; Robinson, N
    This project supports the sugar industry’s intensifying efforts to reduce its nitrogen (N) footprint that is caused by inefficient use of N fertiliser by the crop. The industry aims to minimise N pollution of coastal waters and emission of potent greenhouse gas nitrous oxide from soil without negatively impacting the economic sustainability of sugar production. International research addressing this pervasive problem in grain and other crops indicates that effective approaches combine agronomic innovation of N supply and nitrogen-use efficient (NUE) crop varieties. This UQ-SRA collaborative project, aimed to advance knowledge of N use efficiency of crop varieties through systematic testing of a considerable number of sugarcane clones with diverse genetic background (commercial varieties from Australia and overseas, identified water-use-efficient clones, crosses with ancestral canes). Additional value was derived from a collaboration with QLD DAFF (Andrew Robson) to advance remote sensing of crop N, and investigations of the effects of N fertiliser on soil biology (Graham Stirling-nematodes, UQ consortium-bacterial and fungal communities). Brazilian researchers (Sao Paulo State) have since established sister experiments based on this project. Clones were cultivated with low or recommended N rates (20-40 or 160-200 kg N-fertiliser per year) in two field trials (Mackay, Burdekin). The contrasting N rates were based on concepts that (i) NUE traits are only obvious in low-N environments, and (ii) ideal crop varieties will be strongly responsive to N supply and efficiently acquire N from fertiliser and indigenous soil reserves. NUE traits of 64 clones were characterised over three years (plant crop-1st ratoon crop-2ndratoon crop) by quantifying the effects of contrasting N supply on growth in early, mid and late season. Clone vigour and ratooning ability were evaluated, as was canopy development and photosynthetic performance, the ability to acquire and store nitrate, N allocation to stalks and leaves, and sugar and biomass yields. Project deliverables focused on generating knowledge on the genetic variation in N response and NUE traits and ranking of clones across environments with different soils to study the magnitude and the robustness of NUE traits. The overall deliverables and key findings include: (i) Establishment of field experimental conditions with limited N availability suitable for screeningsugarcane populations for NUE and N-related crop attributes. The field trial set-up was demonstrably effective in evaluating a considerable number of clones over a 3-year crop cycle; (ii) Knowledge of genetic variation for NUE in Australian sugarcane germplasm; (iii) NUE screening for photosynthetic performance, N uptake and accumulation attributes and yield parameters (CCS, sugar and biomass yields) identified benefits/drawback of experimental approaches; (iv) Generated data on trait variation across clones, crop stages and environments, demonstrating that environmental conditions markedly affected crop performance as evidenced by moderate (22%, Mackay) and strong (45%, Burdekin) reduction in yields with low N supply. Soil characteristics are a likely cause as clones at Mackay acquired on average 3- and 2-fold more N than at the Burdekin site over the plant-1st ratoon cycles at low and recommended N supplies; (v) Plant vigour appears to be a major determinant of NUE in sugarcane; (vii) Clones with contrasting NUE and N response have been identified for use in next-step NUE trait research; (viii) Remote sensing showed potential for screening sugarcane germplasm, but its application at early stages of crop growth requires further investigation. Taken together, the project has achieved the stated objective and fulfilled a role in SRA’s focus area of (1) optimally-adapted varieties, Plant breeding and release. The project outcomes have been communicated to the industry nationally and internationally, have been evaluated in the context of global efforts in advancing NUE in crop and cropping systems, and are in preparation for peer review and publication in highly ranked international scientific journals. The project is strongly aligned with industry interests as evidenced by interest of growers, national and international collaborators. Logical next steps towards developing N use-efficient sugarcane in the Australian breeding program include advancing understanding the basis of clone sensitivity to N and tools for rapid selection of N-responsive clones.